
A Data Driven Empirical Iterative Algorithm 
for GSR Signal Pre-Processing  

 

Arvind Gautam1,2, Neide Simões-Capela3,1, Giuseppina Schiavone4, Amit Acharyya2, Walter de Raedt1, Chris Van Hoof1,3 

1IMEC, Kapeldreef 75, Heverlee, Belgium 

2Electrical Engineering Department, Indian Institute of Technology Hyderabad, Sangareddy, India 

3Electrical Engineering Department - ESAT, KU Leuven, Kasteelpark Arenberg 10, Heverlee, Belgium 

4IMEC-NL, High Tech Campus 31, Eindhoven, The Netherlands 

ee15resch01003@iith.ac.in, neide.simoescapela@kuleuven.be, giuseppina.schiavone@imec-nl.nl, amit_acharyya@iith.ac.in, 

 walter.deraedt@imec.be, chris.vanhoof@imec.be 

Abstract— In this paper, we introduce a data driven 

iterative low pass filtering technique, the Empirical Iterative 

Algorithm (EIA) for Galvanic Skin Response (GSR) signal pre-

processing. This algorithm is inspired on Empirical Mode 

Decomposition (EMD), with performance enhancements 

provided by applying Midpoint-based Empirical 

Decomposition (MED), and removing the sifting process in 

order to make it computational inexpensive while maintaining 

effectiveness towards removal of high frequency artefacts. 

Based on GSR signals recorded at the wrist we present an 

algorithm benchmark, with results from EIA being compared 

with a smoothing technique based on moving average filter - 

commonly used to pre-process GSR signals. The comparison is 

established on data from 20 subjects, collected while 

performing 33 different randomized activities with right hand, 

left hand and both hands, respectively. In average, the 

proposed algorithm enhances the signal quality by 51%, while 

the traditional moving average filter reaches 16% 

enhancement. Also, it performs 136 times faster than the EMD 

in terms of average computational time. As a show case, using 

the GSR signal from one subject, we inspect the impact of 

applying our algorithm on GSR features with 

psychophysiological relevance. Comparison with no pre-

processing and moving average filtering shows the ability of 

our algorithm to retain relevant low frequency information. 

Keywords— EMD, Data driven, Iterative algorithm, GSR, 

EDA, Skin conductance.  

I. INTRODUCTION 

Galvanic Skin Response (GSR), also referred to as Skin 
Conductance (SC) or Electro-Dermal Activity (EDA), 
measures the skin conductance level and its change over 
time. Sweat secretion causes changes in skin conductance, 
thus, correlating with GSR value. Emotional stimulation and 
arousal triggers the release sweat, producing measurable 
variation in GSR [1][2]. The hand, wrist and foot are 
common anatomical locations to measure GSR, due to the 
high concentration of sweat glands. GSR signals can be 
characterized by two basic components: tonic component (0-
0.16 Hz) and phasic component (0.16-2.1 Hz)[3][4]. The 
tonic component relates to slow changing baseline levels and 
individual background characteristics. Whereas, the phasic 
component includes the fast changing element which can be 
event related[1][2].  

Traditionally, the measurement of GSR is used in 
psychophysiological research in laboratory environment. 
Measurements are conducted under stationary conditions and 
using experimental protocols that isolate other nefarious 
effects from the physiological aspect being investigated[5]. 
Recently, due to advances in hardware design, miniaturized 
and low power sensing technologies became broadly 
available, leading to crescent access to wearable sensors in 
the consumer market [6-9]. Wearable technology allows to 
shift from measurements of GSR in laboratory, to recordings 
in free-living conditions, with large amounts of data being 
collected without controlled stimulus or strict measuring 
standards. This shift has numerous advantages from the 
application point of view, as continuous and unobtrusive 
monitoring of physiological data is desired both in medical 
and wellness applications. At the same time, it comes at a 
cost: uncontrolled artefacts, induced by improper contact 
between the wearable and skin during free motions, reduce 
the signal quality of the GSR, making acquisitions in 
ambulatory conditions less reliable. 

There is so far, no standardized way to deal with artefacts 
in GSR signals. While some will directly use raw GSR as 
provided by the sensors to extract physiologically relevant 
information [3], others will apply a moving average filter 
(smoothing filter) as pre-processing step [4][12]. In free-
living, we found these methods to be insufficient to deal with 
the aforementioned artefacts[5]. 

Hereby we propose a data driven iterative low pass filter, 
the Empirical Iterative algorithm (EIA) inspired on Empirical 
Mode Decomposition (EMD), to pre-process GSR signals 
and remove motion artifacts. The algorithm can be applied 
both on signals affected by motion artefact, and on signals 
collected during stationary conditions, without interfering 
with the relevant physiological information. We compared 
our algorithm with standard moving average filtering, and 
determined its performance in removing both motion 
artefacts and quantization noise. We tested it on GSR signals 
collected from 20 subjects while performing 33 randomized 
activities using one or both hands. We compare execution 
times for EMD and EIA for these 20 subjects. Also, to show 
the validity of our approach for applications in 
psychophysiology, 4 parameters with physiological relevance 
commonly derived from the GSR signal were calculated, on 
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1 subject, and were compared when calculated from raw 
signals, moving average and EIA processed signals. 

To the best of our knowledge, this is the first work of its 
kind, where a new data driven algorithm is proposed for GSR 
signal pre-processing. 

The remainder of the paper is structured as follows: 
Section II provides the necessary background for this paper, 
Section III presents the proposed algorithm along with the 
performance comparison with the moving average, the 
computation time evaluation and the validation results, 
Section IV includes results and discussion and Section V is 
the conclusion. 

II. BACKGROUND AND METHOD 

A. Empirical Mode Decomposition (EMD) Basics  

Empirical Mode Decomposition (EMD) was proposed by 
Huang et al. [10]. EMD is a data driven nonlinear technique 
for decomposing non-linear and non-stationary signals into a 
set of amplitude and frequency modulated components 
known as intrinsic mode functions (IMFs). The IMFs are 
meant to be zero-mean, mono component, oscillatory 
functions, which are orthogonal to each other. The IMFs are 
obtained from a time series by an iterative process known as 
sifting process [10][11]. In this process, upper and lower 
signal envelopes, respectively defined by the cubic spline 
interpolation of the local maxima and the local minima of the 
signal, are used to estimate a mean envelope. Iterations are 
repeated till the criteria that define an IMF are not satisfied, 
anymore. These criteria are [10]: 

• Mean value of the input signal envelopes should be 
zero in order for the mean signal to constitute an IMF.  

• IMF must have equal number of extrema and zero 
crossings, or the numbers can differ by one.  

After extraction of IMFs from a time series signal the 
residue tends to become a monotonic function, such that no 
more IMFs can be extracted. Finally, after the iterative 
process, the input signal is decomposed into a sum of  IMF 
functions (C1, C2, C3, C4, ...,Cn(t) ) and a residue, r(t). 

B. Midpoint-based Empirical Decomposition (MED) 

A known problem  of  the EMD is the overshooting or 
undershooting of the signal related to the cubic spline 
interpolation. This is partially attenuated by doing the 
interpolation on the midpoints between consecutive minima 
and maxima, and not on the signal envelopes. An approach 
suggested by He et al. [11]. 

C. Method and Data Acquisition System 

To investigate the effect of motion artefacts on GSR 
measured on the wrist, with a wearable device we collected 
data from 20 subjects while performing 11 different activities 
(detailed in Table I) with right hand, left hand (not analyzed 
here), and both hands, respectively. Altogether 33 
randomized activities. A stationary phase was included at the 
beginning of the experiment to be taken as the individual’s 
physiological baseline (i.e. reference at rest). All the 
activities are performed for 30 seconds, followed by 30 

seconds of recovery. These activities include finger, hand 
and arm movements (from 2 to 7) and real-world-like 
activities (from 8 to 12). Using this protocol, around 38 
minutes of data were collected for each subject. As for the 
protocol, data was collected synchronously from both wrists 
during the experiment, though for the purpose of this 
exploration only data collected from the right wrist will be 
used. 

The data acquisition system used in this protocol was the 
Chillband (IMEC vzw, Belgium), a wrist worn sensing 
device show Fig. 1. It collects GSR data at a sampling 
frequency of 256 Hz, within a dynamic range of 0.05-20µS. 
Synchronously, it measures 3D acceleration at a sampling 
frequency of 32 Hz, in the range of ±2 g. 

            

Figure 1. Chill band wearable sensor from IMEC, Belgium 

 
Table. I: Activities 

Serial 
Number  

                     Activity performed Time (s)  

1  Rest 300 

2 Individual finger tapping 60 

3 Radial/ulnar deviation 60 

4 Pronation/supination of hand 60 

5 Wrist extension/flexion 60 

6 Fist opening/closing 60 

7 Whole arm lateral swing 60 

8 Pen fidgeting 60 

9 Random mouse movements and clicking 60 

10 Random keyboard typing 60 

11 Writing/drawing on paper 60 

12 Cleaning table 60 

III. PROPOSED ALGORITHM  

A. Problem statement 

    An example of the raw GSR signal obtained from one 
subject with the protocol described in the previous section is 
shown in Fig. 2. Out of the 33 movements (30 seconds) and 
respective pauses (30 seconds), we highlight the signal 
corresponding to movements involving the right hand. It is 
visible that due to movement, the GSR is affected by motion 
artefacts of different amplitudes, on top of the overall 
quantization noise. 
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Figure 2. Raw GSR: rest and motion phases. Signals corresponding to the 
movements involving the right hand are delimited by red lines. 

 

Figure 3. GSR decomposition based on EMD, IMF6 and its respective 
residue. Detail of overshooting shown inside the red rectangle. 

Applying EMD on the raw signal on Fig. 2, results on 6 
IMFs, and respective residues. The 6th IMF along with its 
residue is shown in Fig. 3. The filtered GSR signal can be 
obtained from the residue, not the IMF itself. 

  The EMD mostly removes the high frequency effect of 
motion from residue obtained in Fig. 3, while preserving the 
global trend of the signal. Though, for breaking down the 
raw GSR into these 6 IMFs (and corresponding residues) the 
sifting process takes around 50 to 60 iterations. Which would 
produce high system latency on real time applications. 
Therefore, there is a need for an algorithm that can be easily 
implement on real-time applications for GSR signal pre-
processing, and also can intelligently remove the high 
frequency noise without affecting the signal. 

B. Empirical Iterative Algorithm 

Inspired by the EMD algorithm, next we propose a new 
iterative algorithm for denoising the GSR from motion 
artefacts and quantization noise. The algorithm does not rely 
on the sifting process of EMD, and provides the filtered 
signal directly as an output of each iteration. This algorithm 
also relies on MED to minimize the effects of overshooting 
or undershooting.  

The pseudocode for the proposed method is presented in 
Fig. 4. The steps 1 and 2(a) are similar to EMD. From step 
2(b) the EIA differs, in the sense that the resulting signal is 

obtained without subtracting the midpoint envelope from the 
input signal. Conveniently performing the iterations on the 
filtered signal, while obtaining the noisy content from the 
final residue. 

   

Figure 4. Pseudocode for the Empirical Iterative Algorithm (EIA) 

The output of EIA on the raw signal from Fig. 2 is shown in 
Fig. 5.  

 

Figure 5. Output from Empirical Iterative Algorithm (EIA) 

In this use case for EIA, the number of iterations is fixed 
on 7, as it was verified based on visual inspection that this is 
a reasonable number of iterations, after testing it on the full 
set of data collected from the 20 subjects. The number of 
iterations can be decreased or increased based on the 
application, and the characteristics of the raw data collected. 

C. Benchmarking 

We benchmark our algorithm with commonly use 
moving average technique. The moving average is applied 
with a window length of 64 samples. The comparison of raw 
GSR, GSR processed with moving average, and GSR 
processed with proposed EIA are shown in Fig. 6. 
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Figure 6. Comparison of raw GSR, smoothened GSR obtained with 
moving average filter and GSR processed with EIA. Emphasis on the detail 

of quantization noise removal. 

The signal-to-noise ratio (SNR) for the raw GSR, the 
GSR processed with moving average and the GSR processed 
with EIA is calculated for all 20 subjects and the results are 
presented in Fig. 7. For the calculation of SNR, the signal 
content is extracted by low pass filtering the input signal 
using a Butterworth filter (3rd order) with a cut-off frequency 
of 1.99 Hz (to include phasic and tonic components). The 
noise content is extracted by band pass filtering in the band 
of 2-10 Hz (to include artefacts and quantization noise) using 
a Butterworth filter (3rd order). The average SNR value for 
all 20 subjects is 40, 47 and 61 dB in the raw GSR, moving 
average and EIA, respectively. 

 

Figure 7. SNR comparison for 20 subjects across raw GSR, Moving Average 
and EIA. 

To further provide evidence on the effectiveness of the 
proposed EIA in adaptively removing motion artefacts, we 
included acceleration magnitude captured in the wrist as our 
reference for motion. In Fig. 8, we present the spectrogram 
of accelerometer magnitude and that of GSR, across 3 
conditions: raw, processed with moving average and 
processed with EIA. The artefacts can be connected to the 
motion detected by the accelerometer and the filtering 
properties of the two methods can be compared. 

 

Figure 8. Spectrogram representation: (a) Raw GSR; (b) Magnitude of 
the acceleration; (c) GSR processed with moving average; (d) GSR 

processed with EIA.  

D. Computation time 

In order to provide data to support our claim that this 
algorithm represents a clear enhancement in terms of 
computation time, we provide the comparison between the 
traditional EMD and EIA in Table. II. EMD decomposition 
was limited to 7 IMFS and EIA to 7 iterations. For both 
algorithms simulations ran on MATLAB 2016a, on a PC 
with an Intel core i5 processor @ 3.50 GHz and 8 Gb RAM. 
Times were measured for each of the 20 subjects in the 
dataset previously described, and averaged. 

Table. II: Computation time for EMD and EIA: mean ± standard 
deviation values for data of 20 subjects. 

EIA (s) EMD (s) 

2.4 ± 0.2 326 ± 45 

E. Proof-of-concept  

As a proof of concept for the proposed EIA, we considered 
4 features with psychophysiological relevance that are 
usually derived from GSR: tonic component, phasic 
component, absolute second difference and number of peaks 
[3][4]. These parameters were calculated on a sliding 
window of length 30 seconds, with 29 seconds overlap. The 
results are shown in Fig. 8 for the raw GSR, GSR processed 
with moving average and GSR processed with EIA.  

     In this sense, we use the phasic and tonic component as 
representing the signal physiological content whereas, the 
number of peaks and the absolute second difference, related 
to their inherent sensitivity to high frequency content, are 
being used to compare artefact effects. 
 

IV. RESULTS AND DISCUSSION 

The results obtained by the SNR comparison on Fig. 7 for 
all the 20 subjects across raw GSR, moving average 
processed GSR and EIA processed GSR, show that the EIA 
can effectively reduce the impact of high frequency motion 
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artefacts and quantization noise. The EIA based processing 
shows approximately 30 % increase in SNR when compared 
to moving average based processing. 

From  the spectrogram analysis shown in Fig. 8(a) the 
high frequency band (above 2 Hz) seems to contain 
principally motion artefacts that correlate to the motion 
reference, i.e. the corresponding acceleration magnitude, in 
Fig. 8(b). On the spectrogram of GSR processed with 
moving average, shown in Fig. 8(c), it is clear that there are 
still high frequency components related to motion. Whereas, 
on spectrogram of GSR processed with EIA, in Fig. 8(d), 
those components are softened and the result contains mostly 
low frequency signal information (bellow 2 Hz). This goes 
along with our claim that the EIA can adaptively soften the 
high frequency motion artefacts as well as the quantization 
noise (as visually depicted in Fig. 5 and 6). 

Our EIA takes 136 times less computational time to 
provide an acceptable output, when compared to EMD, this 
represents a 99% enhancement. The high variance in the 
timing results for EMD is maybe related to high sensitivity of 
the sifting process to the signal content.  

We start by showing in Fig. 2 that the GSR is indeed 
affected by motion artefacts, though these artefacts do not 
affect all the components used in psychophysiological 
research in the same way. From the comparison plot 
established in Fig. 9(a) and 9(b), we visualize that the key 
features of GSR such as tonic and phasic components are 
similar and maintain the same trend across the raw GSR, 
processed GSR from moving average and processed GSR 
from the EIA. Which provides a good indication that the EIA 
retains the relevant information of GSR, and can be used in 
general, whether there is movement or not. However, the 
results from number of peaks and absolute second difference 
show differences. Based on the results in Fig. 9 (c) and (d) 
the EIA decreases the values of both parameters, as the 
number of high frequency oscillations drops. We believe that 
left untreated artefacts will affect these values and provide a 
wrong physiological quantification. 

 

Figure 9. GSR parametrization results based on raw signal, moving average 
and EIA: (a) Tonic component; (b) Phasic component; (c) Number of peaks; 

(d) Absolute second difference.  

V. CONCLUSION 

     In this paper, we present an empirical iterative low pass 
filter algorithm, which is able to reduce motion artefacts and 
quantization noise on GSR signals, that may in the future act 
as a pre-processing step on the estimation of parameters 
with psychophysiological relevance. The algorithm achieves 
an average of 51 % increase in signal quality, while moving 
average archives only 16 %. Also, the EIA performs 136 
times faster than the EMD in terms of the computational 
time. The results from our exploration in terms of 
performance can be considered favorable for future 
integration into a sensor platform for real-time pre-
processing. Future work should focus on expanding the 
validation of the algorithm, to include psychophysiological 
stressors in the protocol, in order to further evaluate the 
impact of the algorithm on the physiological content of the 
GSR signal. Developing robust stopping criteria for the 
number of iterations in EIA should also be considered. 
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