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Abstract—Compressive cameras acquire measurements of a
scene using random projections instead of sampling at Nyquist
rate. Several reconstruction algorithms have been proposed, tak-
ing advantage of previous knowledge about the scene. However,
some inference tasks require to determine only certain information
of the scene without incurring in the high computational recon-
struction step. By reducing the computation load related to the
reconstruction problem, this paper proposes a computationally
efficient object detection approach based on correlation filters
and sparse representation that operate over compressive measure-
ments. We consider the problem of object detection in remote sens-
ing scenes with multi-band images, where the pixels are expensive.
The correlation filters are designed using explicit knowledge of
the target appearance and the target shape to provide a way to
recognize the objects from compressive measurements. Numeri-
cal experiments show the validity and efficiency of the proposed
method in terms of peak-to-side lobe ratio using simulated data.

Index Terms—Object detection, compressive measurements,
correlation filters, sparse representation

I. INTRODUCTION

Compressed sensing (CS) is a signal processing technique to
effectively recover a sparse signal, by solving an underdeter-
mined linear systems [1]. CS has implications in imaging sys-
tems to reduce the number of measurements, power consump-
tion, and storage space. The single-pixel architecture illustrates
a physical CS system for imaging where the sampling matrices
are created using a Digital Micromirror Device (DMD) [2]
and time-resolved systems [3]. When the measurements are
acquired, an inverse problem is solved by using convex opti-
mization in order to reconstruct the image. Several works have
focused on optimization algorithms for signal reconstruction
and less attention has been considered to perform inference
directly on the compressive measurements. In many practical
scenarios, making a decision about an image is most efficient
rather than computing a reconstruction. Furthermore, high-
quality reconstruction is difficult at high compression ratios due
to several parameters such as signal sparsity, sparsifying basis,
noise, etc.

In this work, the reconstruction problem is bypassed since
only a detection task is required. Specifically, object location
can be directly estimated from compressive measurements by
using Correlation Filters (CFs) [4]. CFs provide a solid foun-
dation to object recognition due to they can detect objects
through rotations translations and other distractions. Also, this
work consider the application of remote sensing which provides
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high-resolution aerial images on demand. In remote sensing, it
is common to collect an enormous amount of data, followed
by the transmission of data to a ground station over a low
bandwidth communication channel.

In [5]an object compressive classification method is pro-
posed by recovering parameters directly from the compressed
measurements. [6] theoretically showed that learning directly in
compressed domain is possible and that, with high probability,
the linear kernel Super Vector Machine (SVM) classifier can
be as accurate as the best linear threshold classifier in the
data domain. In [7] a sampling strategy to obtain the optical
flow in video application is proposed. Recently, [8] proposed
a method for action recognition from compressive cameras
without reconstruction at high compression ratios by using
nonlinear features. In this work, a sparse-based framework
for object detection and localization directly from compressed
measurements was proposed, thus avoiding the costly recon-
struction process. In this paper, a training procedure to learn
CFs is proposed in order to reconstruct the object location
directly in the compressed .

II. PROPOSED OBJECT DETECTION

The proposed object detection scheme consists of three steps:
learning CFs, compressive acquisition and sparse optimization,
as sketched in Figure 1. In this section, we first introduce the
background of a compressive camera in Subsection II-A, then
the learning CFs scheme to multi-band images in Subsection
II-B. The computational advantage of the proposed sparse
optimization problem is analyzed in Subsection II-C.
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Fig. 1. Flow of the proposed approach. Three steps make up the proposed
scheme, learning CFs, compressive acquisition and sparse optimization

A. Compressive Camera

Several camera designs have been proposed for compressive
image acquisition. A common element among these is the use
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of a random patterns to modulate the spatial information to the
measurement collection. As an example, the Single Pixel Cam-
era (SPC) [2] uses few optical blocks and number of random
pixels that are projected into a single intensity detector. This
setup has been extended to multi-band images, by combining
the single intensity detector with spectral filtering. This system
can be modeled as a linear mapping, where all pixels 7,7 of
the image z(; ;1) in each spectral band k are mapped to an [th
single point y(; 1). This is expressed mathematically as

Yk = Z¢(z 5,065,k T Wk (D

,J

where ¢(l,4,7,k) € {—-1,1} with1 <i<I,1 <j < Jand
1 < k < K is the discretization of modulation operator with
I, J spatial dimension and K spectral dimension, 1 <[ < L
indexes the measurements and w 1) is additive noise in the
sensor. Equation (1) can be expressed as the linear matrix-
vector system

Y1 P, --- O X1 w1
=10 : N e R I @)

YK 0 Pr| XK WK

where x;, € RI/X! is the vectorization of the kth band,
®;, € {—1,1}F*17 represents the compressive system in the
kthband, y;, € RE*! denotes the L compressive measurements
and w;, € RE*! is the noise matrix assumed to be Gaussian
with Ejw;] = 0 and Elwywl] = o%I,. The acquisition
procedure can be succinctly written as

y=®x+w, 3)

where @ € RELXIJK v ¢ REKEXT gpnd x € RIVEXL Note
that, by considering hardware implementation, ®; must be cho-
sen properly. Based on the Restricted Isometry Property (RIP)
and Coherence [9], couples of existing structured sensing ma-
trices can be used, which have special structures, high recovery
performance, and many advantages such as simple construc-
tion, fast calculation and easy hardware implementation [10],
[11]. This work uses Random Convolution (RC) sensing matrix
due to its important property of Fourier domain operation [12].
In terms of RC, define ®;, = RyFI,diag(pr)F2p, where
Fop € CI7*17 ig the 2D discrete Fourier matrix, pr, = Fapps
is the 2D Fourier transform of the random vector p;, € R/*1
and Ry € {0,1}1%!7 is a subset of L rows from the identity
matrix. The sensing matrix in Equation (2) can be modeled as

diag(p1) -~ O
- T —
® = RF,) . : Fop, @)

0 -+ diag(px)
where R € {0, 1}5*1/K js a block diagonal matrix where
each block has the sub-matrix Ry, Fop = Ix ® Fop with ®
being the Kronecker product and Ir € {0, 1} <X the identity
matrix.
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B. Learning Correlation Filters (CFs)

CFs are commonly used for object recognition due to that
they can detect objects through rotations, translations and other
distractions [4]. The multi-band CFs are extensions of CFs,
which aggregates the responses of all feature bands to produce
a correlation output which is constrained to have a sharp peak
only at the target location. Then, the goal is to learn a multi-
band CF h = [hT .. h%])T where hy € R!/*! (k indexes
the band of the CF) that optimally maps a set of S training
samples {(2x)(s) }s=1,...,s With (z;)(5) € R?7*! to the desired
output {(r)(s)}s=1,....5 with (r)(s) € RI7*L. Then, learning
CF can be 1nterpreted as a regression problem optimizing the
localization loss defined as the Minimum Square Error (MSE)
between an ideal desired correlation output (r)(,) and the
training sample (zz)s) as

h= mlnszZ z1.)(s) * by — () () [13, (5)
s=1 k=1

where * denotes the convolution operation. The Parseval’s
theorem can be used to express the MSE in the Fourier domain
and solve (5) efficiently with respect to h [4]. In this work, we
concentrate on the use of the Maximum a Posteriori (MAP)
probability estimator to learn CFs, which regularizes the esti-
mation process using an assumed prior distribution on the filter
[13].

1) MAP-Analysis Learning Approach: Under appropriate
statistical assumptions and choice of priors and models, the
MAP between the desired correlation output and the training
sample in 2D Fourier domain is

h= mm—ZH

where Z = [diag(z)...diag(2x)], 2z, hy and  are 2D
Fourier representation of zj, hy and r respectively and )\ is a
parameter of the prior model [13]. Note that, the optimization
problem (6) is an analysis model to convolutional dictionary
learning with fixed sparse vector and a regularization term to
dictionary [14]. When h is estimated, the object location can be
determined as Zkl,(zl hy, *x;, = u.

2) MAP-Synthesis Learning Approach: The proposed ap-
proach to learn CFs in this work has several similarities with
the formulation used in (6). However, it is based on a synthesis
model to learn a correlation filter which is used as a sparse
representation basis. Let H = [h; ... hg] with H € RI/*K,
the MAP-Synthesis option to learn the correlation filter in the
2D Fourier domain is

H= mln—ZH

Joh— &) l3 + AIRIE  ©

) H = (Z)o)|I3 + AH[F, (D)

where H = [hy...hg), R = diag(t) and Z = [z, ...2x].
The solution to (7) becomes,
A~ S A~ A S A A
H = (3 (R){)(R)) + M) (R (2)). ®)
s=1 s=1
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where H denotes the conjugate transpose. Then, the synthesis
model assumes that the signal x is given by

diag(h;)
x=Fap Fupu = Hu, )
diag(hx)

where H € RI7EXIJ g ysually called a synthesis dictionary
and u is the coefficients vector of x in H. Note that when h is
correlated with the input x, the expected output presents high
sparsity structure. With this knowledge, we can assume that the
vector x has a sparse representation in the filter matrix H. Then,
we propose a sparse formulation for object detection, which can
be used even in an uncompressed setup.

C. Sparse Representation

In this section, we formulate object detection based on sparse
representation that uses a sparse basis (multi-channel CFs)
to exploit the high sparsity structure of the filter response.
The goal of sparse representation is to reconstruct a vector
u € R’7*! from measurements y = ®x, where L < I.J.
This idea can be generalized to the case in which x is sparse
under a given basis H, so that there is a sparse vector u such
that x = Hu. Then, the acquisition model can be expressed in

terms of the vector u by combining Equation (3) and (9) as

y=®x+w=8Hu+w=Au-+uw, (10)
where
diag(dl)
A =RF,, Fop € REEXIJ,
diag(ax)

ap = pi © hy, with o being the Hadamard product. The sparse
representation is adopted due to two reasons: It is computa-
tionally less costly, since it only involves simple operations
of matrix-vector product and the object location can be easily
derived in terms of sparse coefficients.

1) Sparse Optimization: The vector u can be estimated by
introducing an auxiliary variable v € R’/*! and the Alternat-
ing Direction Method of Multiplier (ADMM) [15] framework

min  (1/2)]ly — Aulj3 + A[v]h an

st u=v,v>0

where || - ||3 and || - ||; denotes the I and /; norms respectively
and ) is a regularization parameter. The procedure is summa-
rized in Algorithm 1. The augmented Lagrangian associated to
the optimization problem (11) can be written as

L(u,v,d) =(1/2)[ly — Aulf5 + Al|v]li+

I (v) + (p/2)|lu — v +d|3

where d € RI7*! is the scaled dual variable, p > 0 is the
weighting of the augmented Lagrangian term and Z (v) is the

indicator function that is zero if v belongs to the nonnegative
orthant and 400 otherwise.

12)
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Algorithm 1: Sparse Optimization.
Imput : y,A,A>0,p>0

1 v® =0,d® =0// ADMM Iterations
2: for t = 1 to MAXITER do
3 ul® =min, £(u,v®D 401

4 v® =max(0, soft(u® 4+ d=1 \/p))

5

6

d® = q¢-1 4 q® _+(®
. end for

a) Updating u: Forcing the derivative of (12) with respect
to u to be zero leads to the following linear system

u=min (1/2)|ly — Aul3 + (p/2)[lu— v +d]3
=(ATA +pI1;) " (ATy + p(u - d))
where I;; € {0,1}/7%17 is the identity matrix. There may
be scenarios where y is completely observed, in this case, the
sensing matrix is simply ® = I ;, thus
ATA + pI;; =F% (diag(hf o hy) + ...

+ dlag(flg o lth) + pI[J)FQD,
can be easily inverted and precomputed. On the other hand,
if the sensing matrix is modeled as (4), the solution of this
system has a heavy computational cost. In order to get a
closed solution and reduce the computational cost in (13), the
linearized quadratic term (1/2)|ly — Aul|3 is used to update u
as follow

(1/2)[ly — Aul3 ~(1/2)[ly — Au® |5+ V(u®)"x

(u—u") + (1/2)u— a3

where V(u®) = AT(Au® —y) is the gradient of (1/2)]|y —
Aul|? at the current point u® and 7 is a positive proximal
parameter [16]. Then, the solution is given by

u=(1/(n+p)(mu? — V) + p(v—d)),

with step size n > p||A||3 [16].
b) Updating v: To compute v, the optimization problem
to be solved is written as

v=min A|v|i+ (p/2)l[u—v+d|f3
= max(0, soft(u+d, \/p))

, (13)

(14)

, (15)

(16)

; A7)

where soft(-; 7) denotes the component-wise application of the
soft-threshold function y =sign(y)max(|y| — 7;0).

III. EXPERIMENTAL RESULTS

This section presents numerical results on object detection
for simulated data. The proposed scheme was implemented in
Matlab and all numerical experiments were conducted on a
computer with an Intel(R) Core(TM) 17-4790 CPU@3.60GHz
and 32 GB RAM.

1) The UC Merced dataset (UCM): The UC Merced dataset
(UCM) [17], contains 21 distinctive scene categories. Each
class consists of 100 images with a size of 256 x 256 pixels.
Each image has a pixel resolution of one foot. Figure 2 shows
two examples of each category included in this dataset.
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Fig. 2. Some samples from UC Merced Land data sets. The green box are the
scene and blue box are the training samples.

2) Quality Metrics: Peak-to-Sidelobe Ratio (PSR) is a
common metric used in correlation filter literature for detec-
tion/verification tasks [18]. PSR is calculated using the formula
PSR = ( peak —p,,)/0, where p,, is the mean and o, is the
standard deviation of the correlation output in a bigger region
around a mask centered at the peak. Figure 3 illustrates how
the PSR is estimated. Firstly, the peak is located (shown as
the bright pixel in the center of Figure 3). The mean and the
standard deviation of the 20 x 20 sidelobe region (excluding a
5 x 5 central mask) centered at the peak are computed.

u
21 x 21
sidelobe +—
region
peak 5%5
mask

Fig. 3. This figure shows how the peak-to-sidelobe ratio (PSR) is estimated.

3) Parameters of the Algorithm: The ADMM stopping cri-
terion is satisfied when ¢ = 100 or when the dual residual is
lp(v® — vED)|2 < 1 x 10~* and the primal residual is
[u® — v®|2 < 1 x 10~* with p = 0.1 and 5 > p(||A|2).
The regularization parameter is set to A = C||ATy|« with
C € (0,1) [15].

A. Parameter Analysis

This section, explores the effect of selecting the parameter
A and the Compression Ratio (CR) on the performance of the
proposed method in terms of PSR obtained by applying the pro-
posed method. The results are averaged over ten simulations,
for each )\, CR and generated ®. Figure 4 depicts the behavior
of PSR for Airport 1 in Figure 2 when 0.01 < A < 0.1 and
compression ratio is 0.05 < CR < 0.4. It can be seen that,
for A > 0.05, the difference between PSR is not large and the
selection of parameters A offers the potential to improve the
performance of PSR obtained by the proposed method.

B. Comparison with Traditional Object Detection

In this section, the robustness of the proposed method is
tested against the traditional object detection based CFs when
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Fig. 4. Parameter sensitive analysis in terms of PSR for the proposed method
on the Airport 1 data base. Different values of compression ratio (CR) are used
while varying 0.01 < A < 0.1.
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Fig. 5. Comparison of the proposed method applied and the traditional CFs,
for different CR with and without additive noise.

both are corrupted by additive Gaussian noise (SNR = 20 dBs).
Figure 5 compares the performance of the proposed method
with respect to the traditional based CFs method. The parameter
has been fixed to A = 0.01 and different compression ratios,
with or without additive noise. The results are averaged over
ten simulations each time varying the matrix P, applying the
proposed method on the Airport 2 and Airport 5 images. It is
possible to observe that the proposed scheme attains PSR less
than 2 of difference in both noisy and noise-free cases. This test
empirically validates the feasibility of the proposed scheme by
showing that the object location can be directly extracted from
the compressed data by solving the proposed model.

Figure 6 displays object location for both data sets. By
visually comparing the reconstructed maps locations, one can
observe that spatial variations of regions are preserved good
enough to achieve a good detection, above CR = 0.1. Also, the
proposed method captures the spatial variation and generates
homogeneous regions by incorporating the regularization term
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Fig. 6. Detection maps obtained by using the proposed method from the Airport 4 ((a) 1st row) and Airport 3 ((a) 2nd row) multi-band data sets. Response of
filter for (b) traditional CFs, (c) proposed method for CR = 0.1, (d) CR = 0.2, (¢) CR = 0.3 and (f) CR =0.5.

. Notice that by using less threshold value A, the extracted
locations lose detail.

IV. CONCLUSION

This paper studies an object detection scheme for remote
sensing data that does not require to reconstruct all data. The
proposed scheme consists of three major steps: 1) Compressive
multi-band image acquisition 2) Learning CFs by using the
MAP synthesis model and 3) object detection by solving a
sparse optimization problem with positive constraint. An ef-
ficient algorithm has been constructed for solving the sparse
optimization scheme based on the alternating direction method
of multipliers. In the experiments, it was shown that the pro-
posed method considerably outperforms the traditional Corre-
lation Filter method in terms of PSR. Numerical results clearly
demonstrate that compressively acquired data of size ranging
from 10% to 25% of the full size can produce satisfactory
results.
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