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Abstract—This paper presents a novel method for synthesizing
new physical layer modulation and coding schemes for commu-
nications systems using a learning-based approach which does
not require an analytic model of the impairments in the channel.
It extends prior work published on the channel autoencoder to
consider the case where the stochastic channel response is not
known or can not be easily modeled in a closed form analytic
expression. By adopting an adversarial approach for learning a
channel response approximation and information encoding, we
jointly learn a solution to both tasks applicable over a wide
range of channel environments. We describe the operation of the
proposed adversarial system, share results for its training and
validation over-the-air, and discuss implications and future work
in the area.

Index Terms—machine learning; deep learning; neural net-
works; autoencoders; generative adversarial networks; modula-
tion; neural networks; software radio

I. INTRODUCTION

The basic channel autoencoder [4], [9] architecture (shown
in Figure 1) has recently received significant interest as
a method for designing communications systems’ physical
layer information encoding schemes. By jointly optimizing
large multi-layer non-linear encoder and decoder networks
with many degrees of expressive freedom, made possible by
techniques collectively known as deep learning [3], it has been
shown that effective new modulation schemes with an inherent
error-correction capability can be readily learned for a variety
of common channel models which is able to perform on par
with maximum likelihood soft-decoding for small codes in
terms of decoding error rates.

This is an exciting result in that rather than manually de-
signing radio modulation schemes for analytic representation
convenience (e.g., slicing on rectangular grid boundaries) and
then measuring or demonstrating their optimal use, we can
directly learn modulation and demodulation functions of high
complexity which optimize the complete system for global
performance metrics or loss functions (e.g., symbol error rate).
This method can provide highly efficient solutions for analytic
channel models of single-user, multi-user, and multi-antenna
communications channels. To optimize for the effects of a
real-world system, however - including the effects induced
by digital conversion, analog RF hardware, and other sources
of distortions and impairments - the analytic expression used
within the channel model must accurately represent all of these

Fig. 1. A channel autoencoder system for learning physical layer encoding
schemes optimized for a differentiable analytic channel model expression

effects, and it must do so in a differentiable way suitable for
backpropagation.

Unfortunately, for many systems, it is difficult to accurately
capture all of these effects in a closed-form analytic repre-
sentation. Thus, they are often represented using simplified
models which cannot fully express real-world complexities
(e.g., device-to-device hardware variation, distortion, struc-
tured interference, etc). For this reason, it is highly desirable to
learn a radio communication scheme directly from the sampled
response of real physical hardware devices and channels
rather than attempting to model and/or simplify the responses
manually. One solution to this, which is implemented and
explored in [6], is to perform gradient updates only on the
receiver network after synthetic pre-training. However, due to
the lack of a channel gradient expression, this approach pro-
vides no way to further update the transmitter or modulation
scheme used. Differentiation through this wireless void is a
difficult problem. An approach using reinforcement learning
and sampling is proposed in [7] for related problems. Our
approach, as presented in this paper, instead treats the problem
as an adversarial function approximation problem.

In the next section we describe our proposed method for
fully adapting the transmitter and receiver to a physical model-
free channel response using a hardware-in-the-loop generative
adversarial channel autoencoder network over-the-air.

II. TECHNICAL APPROACH

Generative adversarial networks (GANs) [2] have recently
been used effectively for a number of applications, including
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Fig. 2. A generative adversarial network for learning a communications system over a physical channel with no closed-form model or expression

the generation of false image examples which can confuse
learned image recognition systems into mis-classifying ob-
jects, and which have demonstrated an unprecedented abil-
ity to generate realistic looking synthetic examples. These
work by simultaneously training multiple adversarial objective
functions, simultaneously or iteratively, which inform and
improve each others’ performance for some task. In the image
generation case, the basic approach trains a discriminator
whose objective is to minimize the error in classifying images
as real or fake, and a second network whose objective is to
minimize the error in generating images from random noise
which classify as real. Since the original work in [2], numerous
variations of this approach have significantly improved the per-
formance of GANs [11], and helped to stabilize the notoriously
unstable optimization problem, but they all generally rely on
this core concept. Building upon this work, we combine our
prior work on channel autoencoders with ideas inspired by
GAN research to jointly optimize for the two tasks of:

1) approximating the response of the channel in any arbi-
trary communications system, and

2) learning an optimal encoding and decoding scheme
which optimizes for some performance metric (e.g., low
bit or symbol error rate)

The basic configuration of this approach, which we refer to
as a Communications GAN (CommGAN), is shown in Figure
2. Here, as with the original channel autoencoder shown in
Figure 1, we leverage two networks for encoding and decoding
of information symbols (s) which comprise our communica-
tions transmitter and receiver. The encoder network, f (s, θ f ),
encodes codeword indices or bits into transmit waveform
(sample values) or constellation (I/Q) values using a set of
encoder weights θ f through a series of neural network layers.
The encoder network comprises fully connected layers with
a ReLU activation, which enables non-linear transformations,
but could take on a number of different network architectures.
The decoder network, g(y, θg), does the inverse - mapping
the set of received samples (i.e., digitized voltage levels at

the receive antenna) into a set of pseudo-probabilities or
likelihood levels for each bit or codeword which may have
been transmitted. The decoder network also comprises a series
of fully connected layers, again using ReLU for non-linear
transforms, and a SoftMax output activation, but could also
comprise any number of different network architectures. In
contrast to our original work on the channel autoencoder, we
do not employ a channel model such as an analytic expression
for Additive White Gaussian Noise (AWGN) or Rayleigh
fading, but instead introduce two forms of the channel h(x) to
encompass modeling of any black-box channel transform:

1) h0(x): A real-world physical measurement of the re-
sponse of a communications system comprising a trans-
mitter, a receiver, and a channel.

2) h1(x, θh): A non-linear multi-layer neural network which
seeks to mimic the channel response of h0 synthetically.

Algorithm 1: CommGAN Training Routine

1 θ f , θh, θg ← random initial weights
2 foreach epoch in epochs do
3 foreach step in steps0 do
4 s0 ← random symbol values
5 y0 = h0( f (s0, θ f ))
6 ŷ0 = h1( f (s0, θ f ), θh)
7 θh ← Adam Update(L0(y0, ŷ0))

8 foreach step in steps1 do
9 s0 ← random symbol values

10 ŝ0 = g(h1( f (s0, θ f )), θg)
11 θ f , θg ← Adam Update(L1(s0, ŝ0))

12 Display metrics
13 Check stopping criteria

Throughout the training process, we use each of these
channel expressions to iteratively arrive at an optimized so-
lution. The simplified training approach used to train each
of these networks is described in pseudo-code in Algorithm

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 535



1. In this work, we use a Mean-Squared Error (MSE) chan-
nel approximation loss (L0), and a sparse categorical cross-
entropy channel autoencoder loss (L1), however numerous
loss functions are possible.

As shown in Algorithm 1 we cycle between competing
training objectives, updating weights for each network during
the appropriate stage with manually tuned learning rates and
relatively small networks for f , g, and h, employing several
fully connected ReLU layers for each. Tuning learning rates
along with batch sizes in this fashion provides one relatively
simplistic method for balancing the unstable learning rates of
the two tasks. Improved methods do exist for improving the
stability of GANs via the training algorithm, which we plan to
leverage in future work (e.g. [5], [8], etc) but do not employ
here at this point.

The physical channel h0(x) is implemented using a Univer-
sal Software Radio Peripheral (USRP B210) [1] and a custom
software stack developed at DeepSig. The ADC/DAC sample
clocks of the transmit and receive hardware share a clock
reference making the relative timing of the two predictable,
but the devices have additional uncalibrated offsets, and im-
pairments including filter group delay, analog component delay
and response, antenna and amplifier distortion, and other over-
the-air effects. We operate the radios in the 900 MHz ISM
band using omni-directional whip antennas in a relatively
benign indoor laboratory environment at a sample rate of 1
MSamp/sec. We loosely calibrate the transmit and receive
times based on a rising edge pulse to within about 1 sample
( 1 microsecond), where unknown fractional timing error and
channel effects exist between the transmit and receive samples.
For purposes of the encoder and decoder networks, we map
information to 16 discrete symbols (i.e., 4 bits per symbol).
We use 3 samples per symbol on the transmitter, and in
each stage we send the three samples from one symbol and
consider a single receive sample at the receiver, which occurs
somewhere within the unaligned 3-sample time window (i.e.,
there is an uncalibrated symbol offset between the transmitter
and receiver).

III. RESULTS

We found that while using MSE as the channel loss,
normalization and noise insertion remain important aspects
of network training, just as they were in the fully simulated
channel autoencoder implementation. Effects such as clipping
(i.e., ’saturation’) in physical analog-to-digital converters are
helpful to capture in normalization to improve training con-
vergence. Including an average power constraint, like those
used in simulation, seem to mitigate un-helpful gradients -
for instance, solutions which simply continually increase the
transmit power.

The training process completes in less than five minutes us-
ing an NVIDIA Titan V GPU. Figure 3 presents the loss curves
of the channel approximation accuracy and the autoencoder
symbol cross-entropy during the training process. Here, both
functions reinforce the other, iteratively building better models

Fig. 3. CommGAN loss curves during the training process

of the channel and learning more optimal transmit signal
representations as time and the number of epochs increase.

The resulting learned modulation scheme is a non-standard
16-QAM mode which achieves a symbol error rate of around
0.00714, measured over-the-air. Figure 4 plots the encoding
scheme’s learned I/Q samples after training, showing the three
complex transmitted samples and the single complex received
sample, taken at some fractional time within the 3-sample
time window, with an over-the-air channel. We can see that
symbols 0, 1, and 2 learn to transmit similar constellations
with varying scaling and rotation, which interpolate to form
a clean non-standard 16-QAM receive constellation, shown
in the bottom right, with a different rotation relative to the
transmitted constellations.

IV. CONCLUSION

We have shown in this paper that by using an adversarial
approach we can learn function approximations for arbi-
trary communications channels, and that by jointly learning
a channel function approximation and an encoder/decoder
scheme we can learn effective communication systems which
achieve robust performance without needing a closed-form
channel model or implementation, even with a simplified
MSE loss function used for channel response approximation.
Previously, over-the-air channel autoencoders required pre-
training based on a closed-form model designed to match the
expected deployment scenario and could not back-propagate
through the black-box void of the radio channel, and thus
only optimized the receiver side of the network [6]. Using an
adversarial approach, we have shown that such a system can
be learned directly on unknown and uncharacterized physical
channels, and that the function approximation for this channel
is sufficient to back-propagate and adapt both encoder and
decoder networks.

Much future work remains for this approach, such as
providing a more in depth analysis of the system performance,
addressing training on a stream of information rather than a
single symbol (also raised in [6]), investigating how such a sys-
tem would perform under changing environmental conditions
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Fig. 4. Learned CommGAN scheme over the 900 MHz ISM band using a
USRP B210 at 1 MSamp/sec, encoding 4 bits into one receive symbol from
3 unaligned over-the-air transmit symbols

with online over-the-air adaptation, and how it might scale
to larger symbol block-sizes on the order of those used by
modern LTE cellular standards. Finally, more recent work in
approximating channel functions as stochastic functions using
variational networks [10] and training using cross-entropy
style GAN loss functions has shown significantly improved
performance over the simplified MSE method used in this
paper in representing complex random distributions. Applying
this class of variational channel autoencoder GAN training
rather than the simplified MSE-based training illustrated here
has enormous potential to further increase performance and re-
move the need for the manual insertion of additional stochastic
effects.

Learning directly from complex systems with high degrees
of freedom, such as radio hardware and the propagation effects
of physical channels, continues to be a challenging problem
for modern communications systems with numerous sources
of linear and non-linear impairments which can be difficult
to accurately capture with simplified analytic models. This
paper presented an alternative approach which addresses the
complexities present in physical radio systems using approxi-
mation networks learned directly from data and experience.
While this class of approach has yet to reach maturity, it
represents a rapidly moving target, and one which we are
working on maturing rapidly within our OmniPHY prototype
communications system. Ultimately, this ability to optimize
a system’s performance holistically, over many joint effects,
distortions and transformations, using principally real world

system measurement data in situ, is a fundamental requirement
for the next major leap in the performance of communications
systems, allowing for efficient adaptation, exploitation and
resilience of a wide range of communications channels and
effects.
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