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Abstract—In this paper, we propose a real-time hand gesture 

recognition model. This model is based on both a shallow feed-

forward neural network with 3 layers and an electromyography 

(EMG) of the forearm. The structure of the proposed model is 

composed of 5 modules: data acquisition using the commercial 

device Myo armband and a sliding window approach, pre-

processing, automatic feature extraction, classification, and post-

processing. The proposed model has an accuracy of 90.1% at 

recognizing 5 categories of gestures (fist, wave-in, wave-out, open, 

and pinch), and an average time response of 11 ms in a personal 

computer. The main contributions of this work include (1) a hand 

gesture recognition model that responds quickly and with relative 

good accuracy, (2) an automatic method for feature extraction 

from time series of varying length, and (3) the code and the 

dataset used for this work, which are made publicly available.  

Keywords—hand gesture recognition, real-time, feed-forward 

neural networks, electromyography, feature extraction, time series 

I. INTRODUCTION 

The problem of real-time hand gesture recognition consists 
of identifying the class of a given movement of the hand as 
soon as the movement is produced. To be more precise, a hand 
gesture recognition model must respond in less than 300 ms 
after the movement ends to work in real time [1]. Solutions for 
this problem have multiple applications including the control of 
hand prostheses [2, 3] and robotics [4, 5]; human-computer 
interaction, including mouse control [6], gaming, sign language 
translation [7], and virtual reality [8]; and medical applications, 
including image manipulation [9]. 

The most common approach for hand gesture recognition is 
to use a sliding window to extract data for classification [10]. 
In this way, the result returned by a recognition model is a 
sequence of labels, where each label corresponds to each 
window observation. To facilitate the analysis, a hand gesture 
classification model can be split into the following 5 modules: 
data acquisition, pre-processing, feature extraction and feature 
selection, classification, and post-processing. The data 
acquisition module refers to the type of sensor that we use to 
acquire data from the hand. For developing hand gesture 

recognition models, different types of sensors have been used 
such as gloves [11]; optical sensors, including webcams [11], 
infrared cameras [12], and lasers [13]; inertial measurement 
units (IMUs) [14]; and surface electromyography (EMG) [15-
17]. Some models also combine signals from different types of 
sensors [18].  

In this work, we focus on surface EMG sensors since they 
have several advantages compared with other types of sensors. 
Surface EMG sensors, or simply EMG sensors from now on, 
measure the electrical signals that the skeletal muscles produce 
when they contract. Compared with optical sensors, EMG 
sensors do not suffer from occlusion, changes of illumination, 
and changes of the distance between the hand and the sensor. 
Additionally, implementing portable models is much easier 
using EMG sensors than using optical sensors, which usually 
need to be placed in a fixed location. Another advantage of 
EMG sensors is that they allow the construction of armbands, 
which are usually more comfortable to wear than gloves. 
Compared with IMUs, EMG sensors return signals with less 
noise. In addition to this advantage, recognizing gestures of the 
hand using angular velocity and acceleration might result 
uncomfortable for some users since we have to place several 
IMUs on the fingers and the palm. Finally, EMG sensors are a 
good option for implementing gesture recognition models for 
upper-limb amputees, for whom the sensors described above 
are very difficult and, in some cases, impossible to use [19]. 

On the other hand, the use of EMG signals for hand gesture 
recognition brings some challenges. Most of the classification 
algorithms proposed in the scientific literature are designed for 
independent and identically distributed feature vectors (i.e., 
stationary process) [20, 21]. However, EMG signals behave as 
a non-stationary Gaussian process modulated by the envelope 
corresponding to a given movement (Fig. 1). The Gaussian 
process has zero mean and time-dependent variance [22]. The 
envelopes of EMG signals have inter- and intra-user variations 
of their shapes [23]. Therefore, developing general recognition 
models using EMG is a more difficult problem than developing 
user-specific models. A general model needs to be trained only 
once and works for any person, whereas a user-specific model 
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needs training for each person and for each time it is used. In 
addition to these problems, EMGs lie in high dimensional 
spaces, where the number of dimensions depends on the time 
of measurement and the sampling rate. 

 

Fig. 1. EMG signal (red line) and its envelope (black line). 

The preprocessing module consists of a set of techniques, 
which can be used to clean and condition the signals returned 
by the data acquisition module. The most common techniques 
used for pre-processing EMG include rectification and filtering. 
The main goal of these techniques is to reduce the noise and 
detect the envelope of EMG signals. The envelopes of EMGs 
can be used to determine which type of movement or gesture 
was performed [24]. 

The feature extraction module is responsible for extracting 
independent and non-redundant feature vectors, which need to 
be discriminative enough for the classification module. For 
hand gesture recognition, the most common domains for 
feature extraction include time, frequency, and the combination 
of these two (e.g., wavelets and spectrograms) [24]. For EMG 
classification, the features are usually defined manually, which 
requires deep knowledge of the biological processes underlying 
the generation of EMG signals during muscle contraction. 
Additionally, given an initial set of features, deciding which 
subset of these features is the best option for the classification 
module (i.e., feature selection) is not a trivial task since this 
problem is combinatorial [20]. 

The classification module consists of a function that maps 
feature vectors to labels. The most frequent classification 
algorithms used for hand gesture classification include support 
vector machines [25], feed-forward and recurrent neural 
networks [26], convolutional neural networks [16], decision 
trees [27, 28], k-nearest neighbors (kNN) [7], linear 
discriminant analysis [29], hidden Markov models, and 
ensembles of classifiers such as random forests [27, 28]. In this 
work, we focus on the use of feed-forward neural networks 
because this type of network is a universal aproximator [21, 
30]. This means that a feed-forward neural network with as 
many as three layers: input, hidden and output; with arbitrary 
squashing functions; and with enough number of neurons in the 
hidden layer is capable of approximating any Borel measurable 
function with a desirable degree of accuracy [30]. 

The post-processing module is in charge of refining the 
decision returned by the classification module. The most 
common operation used for post-processing is filtering the 
sequence of labels returned by the classifier. This operation 
eliminates spurious labels and produces a smooth response 
from the recognition model. 

Developing a real-time gesture recognition model is a very 
challenging problem since we usually must find an adequate 
balance between model complexity and computational cost. 
Models with high complexity, measured through the Vapnik-

Chervonenkis (VC) dimension [23, 24], have usually high 
computational cost and can give high classification accuracy 
provided that we have enough training data. However, models 
with high computational cost are usually not good for 
developing real-time recognition models due to the long time 
of processing and large memory requirements. Additionally, 
training models with high complexity demands large training 
datasets to avoid overfitting. In the case of user-specific 
models, acquiring large training datasets is very difficult from 
the practical point of view since the models need training for 
each person and for each time they are used. On the other hand, 
using models with low complexity usually means low 
computational cost. However, models with low complexity 
applied to non-linear problems lead to low classification 
accuracy. Moreover, because EMG signals lie in a high 
dimensional space, we need an appropriate method for feature 
extraction in order to reduce the number of dimensions without 
losing key information for classification. Therefore, the 
problem of real-time hand gesture recognition is still open for 
new research which, among other things, must find feature 
extraction and classification methods with a good balance 
between model complexity and computational cost. Finally, in 
this work we propose a real-time hand gesture recognition 
model composed of 5 modules, which will be described in the 
next section. 

Following this introduction, in section 2, we describe the 
sensor used in this work and each module of the proposed 
model. In section 3, we present, analyze, and compare the 
results obtained in this work. Finally, in section 4, we draw 
some conclusions and outline the future work. 

II. MATERIALS AND PROPOSED MODEL 

A. Materials: Myo Armband and Datasets 

The Myo armband (Fig. 2) is a commercial low cost EMG 
sensor built by Thalmic Labs. This sensor can be worn on the 
forearm. This sensor returns a digital EMG signal composed of 
8 channels measured at 200 Hz. Each channel corresponds to 
the data acquired by each of the 8 pods that are distributed 
uniformly along the armband. The EMG measured by this 
sensor is transmitted via Bluetooth to the computer. 

 

Fig. 2. Myo armband and the gestures recognized in this paper. 

In this work, we focus on the recognition of 5 gestures: fist 

(fi), wave-in (wi), wave-out (wo), open (op), and pinch (pi). 

The set of all gestures that our model does not recognize, 

including the rest position, is referred as no-gesture (no). The 
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reason why chose these 5 gestures is because this allows us to 

compare the performance of the proposed model with the 

performance of the proprietary system of the Myo armband. 

Additionally, we can also perform comparisons with the 

performance of other similar works proposed in the scientific 

literature. In Fig. 2, we show the 5 gestures that we recognize 

in this work. It is worth indicating that this figure shows each 

gesture at its final position. 

For this work, we used data from 10 people. The training 

dataset Dtrain = {(F1, Y1), …, (FN, YN)} of each user contains a 

total of N = 30 examples, where the matrix Fi ∈ [-1, 1]
8×400 

corresponds to the ith EMG signal measured during 2 s. The 

categorical variable Yi ∈ {no, fi, wi, wo, op, pi} denotes the 

label for the signal Fi, with i = 1, 2, …, N. These 30 examples 

include 5 instances for each of the 6 classes defined 

previously. During the 2 s of measurement, users were asked 

to perform an instance of the 5 classes of {fi, wi, wo, op, pi}. 

All the instances of these 5 categories went through the 

following continuous sequence of 3 positions: rest, final 

position, and rest. For acquiring data for the class no-gesture, 

users were asked to have the hand in the rest position. 

The testing dataset Dtest = {(G1, Y1), …, (GM, YM)} of each 

user is formed by M = 150 examples, recorded during 5 s each. 

Dtest includes 30 instances of each class of {fi, wi, wo, op, pi}. 

For testing, we do not include the class no-gesture because the 

goal is to recognize the 5 classes defined previously from any 

other movement (no-gesture). Each matrix Gi from the testing 

set is an element of the space [-1, 1]
1000×8, with i = 1, 2, …, M. 

We recorded the EMGs for testing longer than for training to 

position the EMG segment corresponding to the gesture at any 

region within the 5 s of measurement of the testing signals. 

B. Proposed Model 

The proposed model is composed of two stages: training 

and testing. In the training stage, we develop and train the 

proposed model. In the testing stage, we estimate the actual 

recognition accuracy of the proposed model. 

a) Data Acquisition: For data acquisition, we define a 

window W = (w1, …, wm), where wi is a non-negative integer, 

with i = 1, 2, …, m. For this work, we used a window W of    

m = 500 points. The stride between two consecutive window 

observations is 10 points. We treated each observation as time 

series represented by the matrix E = [E1; …; E8] ∈ [-1, 1]
m×8, 

where the column vector Ei = [Ei1, …, Eim]
T
 corresponds to the 

ith channel of the observation E, with i = 1, 2, …, 8. 

b) Pre-processing: Here, we first rectify the signal E 

obtaining thus the new signal R = abs(E) ∈ [0, 1]
m×8, where 

the absolute value is applied to each element of E. Second, we 

extract the envelopes V of each channel of the signal R. For 

this task, we apply to each channel of the signal R a low-pass 

Butterworth filter Ψ of 5th order, with a cutoff frequency of 

10 Hz, obtaining V = Ψ(R) ∈ [0, 1]
m×8. Third, we segment in 

V the region corresponding to a muscle contraction [31]. For 

this task, we compute the sum S = sum(V, 2) ∈ [0, 8]m×1 along 

the rows of the matrix V. Then, we compute the spectrogram 

PC = S(S) ∈ C
26×p of S by dividing the frequency interval     

[0, 100] Hz into 26 points. For the time division, we use a 

Hamming window of 25 points, with a stride of 15 points 

between two consecutive window observations. The value of p 

can be computed as p = floor( (m - 10)/15 ), where floor 

rounds toward -∞ and m is the length of the signals E, R and 

V. Next, we compute the modulus of each complex element of 

PC obtaining thus the new matrix P ∈ R26×p. Next, we sum 

along the columns of P obtaining the vector U = sum(P). 

Finally, we find the 2 indices is and ie of U between which its 

values are equal to or greater than a given threshold τu. For 

this work, we used the threshold τu = 10. If the difference (ie - 

is) is less than a points, then the segmentation returns the 

signal Z = V. Otherwise, the segmentation returns the rows of 

V between the indices is and ie: Z = V(is:ie, :). For this work, 

we used a = 100 points. Note that this segmentation causes 

that the Z signals have different lengths. Finally, if is = 1 and  

ie = m, then we execute the next two steps: feature extraction 

and classification. Otherwise, we return the label no-gesture 

and proceed to the post-processing module directly. This 

previous classification is done because, if a window 

observation E does not contain the complete EMG of a 

gesture, we want to reduce the chances of the next two 

modules returning an incorrect label for E. 

c) Feature Extraction: In this module, we automatically 

extract a feature vector X = (X1, …, Xr) ∈ R
r
 for the signal Z, 

with r = 6 for this work. For this task, we first pre-process 

each example of Dtrain using the steps described in the 

previous module. Then, for each Y ∈ {no, fi, wi, wo, op, pi}, 

we obtain the set ζY of pre-processed EMGs from Dtrain that 

belong to the class Y. Next, we find the signal Hi* ∈ ζY that is 

closest to all the elements of ζY, with i = 1, 2, …, r. For this 

task, we use the Dynamic Time Warping (DTW) distance for 

multi-channel time series [32]. Thus, we obtain the tuple  

(H1*, …, Hr*) of pre-processed EMGs that will be used for 

feature extraction. Note that the computations described so far 

in this module need to be performed only once for the training 

dataset Dtrain of each user. Next, we compute the feature vector 

for the signal Z through X = ( dtw(H1*,Z), …,  dtw(Hr*,Z) ), 

where dtw denotes the DTW distance for multi-channel time 

series. 

d) Classification: In this module, we estimate the class 

ψ(X) ∈ {no, fi, wi, wo, op, pi} to which the feature vector X 

belongs. For this purpose, we use the equation  

ψ(X) =
,  , { }, ,  ,  no fi wi wo opy pi

argmax
∈

P(Y = y|X),                    (1) 
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subject to the constraint that the conditional probability that 

maximizes (1) is equal to or greater than τ. Otherwise, X is 

labeled with no-gesture. In (1), the term P(Y = y|X) denotes the 

conditional probability that X belongs to the class y. For this 

work, we set the threshold τ = 0.5 to reduce the number of 

false positives for each class. For estimating the distribution 

P(Y|X), we use a shallow feed-forward Neural Network (NN) 

composed of three layers: input, hidden and output. The input 

layer is composed of 6 units, where each unit takes each 

component of the feature vector X. The hidden layer is 

composed of 6 neurons with hyperbolic tangent functions. The 

output layer is also composed of 6 neurons with the softmax 

transfer function. For training the NN, we use the cross-

entropy cost function and the gradient descend method [20, 

21], with the training set D = {(X1, Y1), …, (XN, YN)}. In this 

set, each vector Xi is obtained from the signal Fi ∈ Dtrain by 

applying the pre-processing and the feature extraction modules 

defined above, with i = 1, 2, …, N. Before feeding a feature 

vector X to the NN, we standardize its values by (Xj - µ)/σ, 

where µ and σ denote the mean and the standard deviation of 

X, respectively, with j = 1, 2, …, r. 

e) Post-processing: Here we eliminate consecutive 

repetitions of the same label by using a time delay of one 

window observation. Let us assume we have the sequence of 

labels ψ(X)i - 1, ψ(X)i for some i ∈ Z
+
. If the current label 

ψ(X)i is equal to the previous label ψ(X)i - 1, then we return 

ψ(X)i = no. Otherwise, we return the label ψ(X)i unchanged. 

III. RESULTS, ANALYSIS, AND COMPARISONS 

In this section, we present, analyze, and compare the results 
obtained by applying the proposed model to each testing set 

Dtest of the 10 volunteers of this work. The testing dataset of 

each person is composed of 30 examples of each category of 
the set {fi, wi, wo, op, pi}. Therefore, for each person, we have 
a total of 150 examples. The recognition accuracy that we 
report in this paper is computed over the 1500 examples that 
we have in total for testing. The time of processing that we 
report corresponds to the average time of labeling a window 
observation using a personal computer with an Intel® Core™ 
i7-3770S processor and 4GB of RAM memory. 

For reproducing the results of the recognition accuracy of 
the proposed model, we make publicly available in the link: 
https://drive.google.com/drive/folders/1ZCsaHNc08MYvOS1lf
MC_wchioix6srpB the Matlab code as well as the datasets used 
for training and testing the proposed model. Reproducing the 
time of processing will be a bit difficult because this variable 
depends on the computational resources used to run the code. 

In Table 1, we present the confusion matrix of the proposed 
model. For comparison purposes, in Table 2 we present the 
results that we obtained in this paper as well as in our previous 
works [31] and [33]. In [31] we presented a model using the 

kNN classifier based on the DTW distance. In [33] we 
presented an evolution of the model presented in [31], by 
incorporating the segmentation of the muscle contraction on 
the training dataset only. In addition to these results, we also 
present the results that we obtained by evaluating the 
recognition accuracy of the proprietary model of the Myo. 

TABLE I.  CONFUSUION MATRIX OF THE PROPOSED MODEL 

Targets 
% PRECISION 

% ERROR  FIST 

(fi) 

WAVE-IN 

(wi) 

WAVE-OUT 

(wo) 

OPEN 

(op) 

PINCH 

(pi) 

P
re
d
ic
ti
o
n
s 

NO-GESTURE 

(no) 

16 

1.1% 

21 

1.4% 

8 

0.5% 

14 

0.9% 

26 

1.7% 

0.0% 

100% 

FIST  

(fi) 
282 

18.8% 
3 

0.2% 
0 

0.0% 
3 

0.2% 
1 

0.1% 
97.6% 
2.4% 

WAVE-IN 

(wi) 
2 

0.1% 
276 

18.4% 
9 

0.6% 
2 

0.1% 
16 

1.1% 
90.5% 
9.5% 

WAVE-OUT 

(wo) 
0 

0.0% 
0 

0.0% 
278 

18.5% 
10 

0.7% 
0 

0.0% 
96.5% 
3.5% 

OPEN 

(op) 
0 

0.0% 
0 

0.0% 
5 

0.3% 
271 

18.1% 
12 

0.8% 
94.1% 
5.9% 

PINCH 

(pi) 
0 

0.0% 
0 

0.0% 
0 

0.0% 
0 

0.0% 
245 

16.3% 
100% 
0.0% 

%SENSITIVITY 
% ERROR 

94.0% 

6.0% 

92.0% 

8.0% 

92.7% 

7.3% 

90.3% 

9.7% 

81.7% 

18.3% 

90.1% 

9.9% 

TABLE II.  RESULTS OF DIFFERENT RECOGNITION MODELS 

Model 
Accuracy 

(%) 

Time 

(ms) 

Proposed 90.1 11.0 

kNN + DTW distance + segmentation [31] 89.5 193.1 

kNN + DTW distance [33] 86.0 245.5 

Myo 83.1 ----- 

 

The results presented in Table 1 show that our model have a 
recognition accuracy of 9%. The highest and the lowest 
sensitivities occur for the gestures fist (94.0%) and pinch 
(81.7%), respectively. The highest and the lowest precisions 
occur for the gestures pinch (100%) and wave-in (90.5%), 
respectively. The results of this table also evidence that our 
model fails the most at discriminating between the classes 
pinch and wave-in followed by the classes pinch and open. 
Additionally, the values of the row corresponding to the class 
no-gesture evidence that some gestures at not recognized at all. 
This problem might be caused because, for some EMGs, our 
model predicts a sequence of labels belonging to two or more 
classes from the set {fi, wi, wo, op, pi}. 

The results of Table 2 evidence that the recognition 
accuracy of the proposed model is slightly higher than the 
accuracy of the model presented in [31] and higher than the 
accuracies of both [33] and the proprietary system of the Myo. 
Regarding the time of processing, the proposed model is 17 
times much faster than the real-time models used for the 
comparison. This occurs because these two previous models 
use the kNN classifier, whose time complexity of classification 
depends on the number of training examples. In contrast to this 
fact, the time complexity of classification model using a NN is 
constant with the number of training examples. 

IV. CONCLUSIONS 

In this paper, we have made three main contributions. (1) 
We have proposed a real-time hand gesture recognition model 
that responds quickly (i.e., in 11 ms) as well as with good 
accuracy (90.1%). (2) We have also proposed a method for 
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automatic feature extraction of time series of varying length. 
Finally, (3) we have made both the code and the dataset that we 
used for this paper publicly available. This last contribution 
will allow the readers to reproduce the recognition accuracy 
obtained in this paper and check the fine details of our 
implementation. 

Future work includes the research of new algorithms to find 
automatically the centers of the clusters of each category for 
the feature extraction module. Another problem to research 
about is the use of recurrent neural networks for the 
classification module in order to improve the recognition 
accuracy using context information. 
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