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Abstract—Acoustic emission testing is widely used by indus-
try to detect and localize faults in structures, but estimated
source positions often show significant bias in real tests as a
consequence of Time Difference of Arrival (TDOA) bias. In
this work, a model for TDOA bias is developed considering
the time of arrival was estimated using the fixed threshold
algorithm, as well as theoretical upper and lower bounds
for it. In addition, we derive the time of arrival probability
distribution function in terms of the noise distribution and
acoustic emission waveform for the fixed threshold algorithm,
showing that, contrary to usual practice, it in general cannot
be well approximated by a Gaussian distribution.

I. INTRODUCTION

Acoustic emission testing is a non-destructive testing
method used to detect several kinds of faults in structures
such as piping, bridges and aerospace structures. Its main ad-
vantages over other non-destructive testing methods are the
high sensibility, the wide coverage region and the possibility
of monitoring structures in real time [1]–[6]. Elastic waves
that propagate through the medium are detected by acoustic
emission sensors, and as the signal is acquired at each sensor
its time of arrival is estimated. If the wave velocity at the
medium is known and at least three sensors are used, local-
ization algorithms can estimate the fault position in a surface
based on the time difference of arrival (TDOA) estimates,
which is defined as the difference between the estimated
times of arrival at two different sensors. [7]–[13]. However,
localization methods usually provide estimated positions that
may have large variance and bias. For this reason, several
authors have been working in new localization methods
[14]–[19].

In real tests, the time of arrival estimates are subject
to uncertainties deriving from signal distortion and noise.
While some authors estimate time of arrival applying the
fixed threshold method to simulated or real signals [14]–
[16], [20], others assume the time of arrival is Gaussian-
distributed instead of processing the received signals [11],
[17]–[19]. To the best of our knowledge, no study about the
time of arrival distribution expression has been published
yet. Knowing the time of arrival pdf expression would allow
the development of new statistical source position estimators
that may have better performance than traditional source
localization methods. For this reason, in this work we derive
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the time of arrival pdf considering noise, sampling and
waveform distortion, and show it is not Gaussian distributed.
We also deduce an approximated and simplified expression
for the pdf that depends on less parameters, being easier to
apply in practical situations than the exact distribution.

The fixed threshold method is a popular detection algo-
rithm where the time of arrival is estimated as the first time
the received signal absolute value crosses a fixed threshold
[20]. However, sampling rate, attenuation and envelope mod-
ulation due to sensor frequency response can add bias to esti-
mated Time Difference of Arrival (TDOA) and consequently
to estimated position, since the position is estimated using
TDOA measurements. It is interesting to reduce TDOA bias
because it may lead to an estimated source position bias
reduction, and thus a smaller localization error. In [19],
a bias reducing algorithm for TDOA-based localization is
developed, but TDOA itself was assumed unbiased and
Gaussian distributed. Our second contribution is to derive
an approximated model for the TDOA bias for the fixed
threshold algorithm considering our more realistic time of
arrival model, as well as lower and upper bounds for it.

Notation: E{·} denotes the expected value, P(A) is the
probability of A, the operator ∗ represents convolution, Γ(·)
is the Gamma function and b·c and d·e are respectively the
floor and ceil operators.

II. TIME OF ARRIVAL PROBABILITY DISTRIBUTION

The objective of this section is to derive an expression for
the probability distribution of the time of arrival considering
it was estimated using a fixed threshold, as well as an
approximated closed-form expression for it. The threshold
value is considered to be set high enough so that the noise
has approximately zero probability of crossing it.

A. Signal Model

We consider an acoustic source located at a determin-
istic position X = (xs, ys) emitting an elastic wave at
t = 0 that propagates throughout the 2D isotropic material
with velocity c. Let us(t) and ui(t) be the displacement
respectively at the source position and at the i-th sensor
position Xi = (xi, yi). We assume a frequency-independent
attenuation model so that

ui(t) = aius(t− τi), (1)
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Figure 1. The elastic wave generated by the source at t = 0 reaches the
sensors at different instants and with different amplitudes.

where

ai =
e−α‖Xs−Xi‖

‖Xs −Xi‖
1
2

(2)

is the attenuation function adopted in [21]. The constant α
is the attenuation coefficient and τi = 1

c ‖Xs −Xi‖ is the
time the wave takes to propagate from the source to the i-th
sensor, as illustrated in Figure 1. Assuming all sensors have
the same frequency response h(t), the electrical signal ri(t)
sensed by the i-th sensor in a noiseless scenario is

ri(t) = [h ∗ ui](t) = ai[h ∗ us](t− τi) = aiψi(t), (3)

where ψi(t) = [h ∗ us](t − τi). Defining A = maxt |ψi(t)|
and letting the normalized received signal be ψ(t − τi) =
ψi(t)
A (A is the equivalent source amplitude) and assuming

the signal at each sensor is sampled at the instants t =
nT + t0, where n is a non-negative integer, T = 1

F is the
sampling interval and t0 is the initial sample instant, the
signal sampled by sensor i and corrupted by a white noise
wi[n] is

ri[n] = aiAψ(nT + t0 − τi) + wi[n]. (4)

Throughout this paper, we assume that the noise probabil-
ity density function fW (w) is symmetric, i.e. fW (w) =
fW (−w), or equivalently, FW (w) = 1 − FW (−w), where
FW (w) is the noise cumulative distribution function (cdf).
We also assume that t0 is uniformly distributed in [0, T ].
In addition, we consider the time of arrival was estimated
using the fixed threshold method. This algorithm estimates
the time of arrival at the i-th sensor as the smaller instant
such that the |ri[n]| is greater than the threshold K.

B. Time of Arrival Probability Distribution
We first calculate the pdf of the time of arrival ti given

the initial sample time t0. Using the fixed threshold method,
the probability of detection at the sample n is the probability
of |ri[n]| > K and |ri[j]| < K for all j < n.

Let Φi(t) be the probability of the absolute value of a
sample acquired at instant t be less than the threshold. Φi(t)
can be expressed in terms of the noise cdf FW (w):

Φi(t) = P[|aiAψ(t− τi) + wi[F (t− t0)]| < K] =

FW (K − aiAψ(t− τi))− FW (−K − aiAψ(t− τi)). (5)

As the threshold is assumed to be much larger than the
noise standard deviation, we can approximate FW (K) =
1 − FK(−K) to one. This means that FW (K − aiAψ(t −
τi)) is approximately one if aiAψ(t − τi) < 0, otherwise
FW (−K − aiAψ(t− τi)) is approximately zero. The noise
symmetry implies that FW (w) = 1 − FW (−w), leading to
a simplified approximation for Φi(t):

Φi(t) ≈ FW (K − |aiAΨ(t− τi)|). (6)

Recalling that the estimated time of arrival is constrained
to the discrete instants t = kT + t0, the probability mass
function (pmf) of ti given t0 can be calculated as

P(ti = t|t0) = (1− Φi(t))
∞∏
j=1

Φi(t− jT ). (7)

Taking into account that ri(t) = 0 for t < τ , the product
upper bound can be substituted by bF (t− τ)c since Φi(t−
jT ) = 1 for j > F (t − τ). The time of arrival pdf fti(t)
can be calculated using P(ti = t|t0) and the initial sample
instant pdf ft0(t):

fti(t) =
+∞∑

k=−∞

P(ti = t|t0 = t− kT )ft0(t− kT ). (8)

As ft0(t−kT ) = 0 for t−kT /∈ [0, T ], all the elements of the
sum are equal to zero, except for k such that 0 ≤ t−kT ≤ T ,
which is only possible for k = bFtc. Substituting the pmf
in (7) into (8) yields

fti(t) =
1

T
[1− Φi(t)]

bF (t−τ)c∏
j=1

Φi(t− jT ). (9)

We compare fti(t) from (9) with the experimental distri-
bution obtained in simulation in section IV.

C. Simplified Case

(9) is a complicated expression that describes the time
of arrival pdf in terms of the noise cdf for any signal and
for any symmetric noise distribution, and does not lead to
closed-form solutions in general. A simple expression can
be obtained assuming the noise level is low enough so that
ψ(t) can be approximated by a first-order Taylor polynomial
centered at t̄i, where t̄i is the noiseless time of arrival at the
i-th sensor (i.e., disregarding the effect of noise, but not the
errors due to sampling and waveform attenuation. See figure
2). Note that this hypothesis is not true if t̄i−τi occurs near
a maximum of |ψ(t)|.

Let ψ′(t) = dψ
dt and consider the first-order Taylor

approximation for the signal ψ(t) centered at t̄i − τi:

ψ(t) ≈ ψ(t̄i − τi) + ψ′(t̄i − τi)(t− t̄i + τi). (10)

Defining the constants bi = ψ′(t̄i − τi) and τ̄i = t̄i − τi −
ψ(t̄i−τi)
ψ′(t̄i−τi) , this expression can be rewritten as

ψ(t) ≈ bi(t− τ̄i). (11)

We also need to approximate FW (w) in order to simplify
the product in (9). FW (w) may be approximated as the
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first order Taylor polynomial centered at w = 0, if w is
assumed to be bounded on an interval to guarantee that
0 ≤ FW (w) ≤ 1.

FW (w) ≈


0, w < − 1

2fW (0) .
1
2 + wfW (0), − 1

2fW (0) ≤ w ≤
1

2fW (0) .

1, w > 1
2fW (0) .

(12)
Using this approximation for FW (w) is equivalent to ap-
proximate the noise distribution as a uniform distribution
bounded between −∆ and +∆, with ∆ = 1

2fW (0) . Substi-
tuting these approximations in (9) and defining the constants
t−i = τ̄i + τi + K−∆

|Abi| and t+i = τ̄i + τi + K+∆
|Abi| , we have

fti(t) ≈
Bi(t)

T

bF (t−t−i )c∏
j=1

|bi|
2∆

(t+i − t+ jT ), (13)

where Bi(t) is defined by

Bi(t) =


bi(t−t−i )

2∆ , t−i ≤ t ≤ t
+
i .

1, t+i < t < t+i + T.

0, t < t−i or t ≥ t+i + T.

(14)

Applying the arithmetic progression product formula [22] to
(13), we obtain

fti(t) ≈
Bi(t)

T

[
biT

2∆

]N(t)
Γ(1 + F (t+i − t) +N(t))

Γ(1 + F (t+i − t))
,

(15)
where N(t) = bF (t− t−i )c. This expression can be further
simplified assuming the sample rate is high enough so that
N(t) ≈ F (t− t−i ), resulting in

fti(t) ≈
Bi(t)

T

[
biT

2∆

]F (t−t−i )
Γ(1 + F (t+i − t

−
i ))

Γ(1 + F (t+i − t))
. (16)

Unlike the exact time of arrival pdf expression (9), this
approximated pdf does not depend on the entire source
waveform, but only on the noiseless time of arrival and
the source waveform derivative at that point. This closed-
form approximation may simplify the development of better
location estimators.

III. TIME DIFFERENCE OF ARRIVAL BIAS

In the previous section an exact pdf for the estimated time
of arrival was derived. We are also interested in obtaining
the bias in the TDOA, which is more important than the
time of arrival bias when the localization algorithm is based
on the TDOA, since two time of arrival estimates with the
same bias would produce an unbiased TDOA.

We can obtain the TDOA pdf using the time of arrival pdf
expression in (9) or even its approximation in (16). However,
this approach does not lead to a closed-form expression, so
in the remaining of this section we concentrate on finding a
closed-form approximation for TDOA bias.

The signal ψ(t) is modeled here as an envelope m(t)
that is increasing and thus invertible in the interval [0, tmax]

Figure 2. Illustration of (18) in a noiseless case

and whose maximum is at t = tmax, modulated by a
cosine whose frequency f0 represents the sensor resonance
frequency. Since the time of arrival has a low probability
to be after the peak of the waveform, we do not make any
restriction to ψ(t) for t > tmax.

ψ(t) = m(t) cos(2πf0t), 0 ≤ t ≤ tmax (17)

The time τi the wave takes to reach the sensor can be seen
as the optimal value for ti. The measured time of arrival
deviation from τi can be approximately decomposed into a
sum of errors cause by different factors:

ti − τi ≈ εthr + εosc + εsamp + εnoise. (18)

The factor εthr = m−1( K
Aai

) is the time the wave envelope
m(t) takes to reach the threshold since the wave has arrived,
εosc is the time the signal ψ(t) takes to cross the threshold
after m(t) crosses it, εsamp is the time the sampled signal
takes to cross the threshold after the analog signal crosses it,
and εnoise is the time of arrival deviation cause by sampled
noise. Figure 2 illustrates (18) in a noiseless case.

Consider the noise level is small enough so that ψ(t) can
be approximated by its tangent line at t = t̄i − τi as in
equation (10). As |Aaiψ(t̄i − τi)| = K, approximating the
time of arrival deviation caused by sampled noise as the one
caused by a zero-mean continuous-time noise wi(t) leads to

Aaiψ
′(t̄i − τi)(ti − t̄i) + wi(t) = 0 (19)

Applying the expected value into both sides of the equation
we obtain E{ti} = t̄i and conclude that E{εnoise} ≈ 0.

Assuming the sampling rate is higher enough than f0 so
that the first time |ψ(t)| crosses the threshold it has a high
probability to stay above it for at least one sampling period,
the deviation εsamp, which is always positive, will have a
high probability to be less than T .

Since m(t) is an increasing function in [0, tmax], the
deviation εosc, which is also always positive, is limited by
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half of the oscillation period because in the worst case the
signal will be detected in the next period of |ψ(t)|. Hence,
under the assumed hypothesis, the measured time of arrival
deviation from τi is bounded by

m−1

(
K

Aai

)
≤ ti − τi ≤ T +

1

2f0
+m−1

(
K

Aai

)
. (20)

The TDOA bias bounds can then be calculated using (20):

−T − 1

2f0
+ ∆εthr ≤ ∆t−∆topt ≤ T +

1

2f0
+ ∆εthr, (21)

where ∆topt = τ2 − τ1 is the optimal TDOA, ∆t = t2 −
t1 is the estimated TDOA and ∆εthr is the time of arrival
deviation due to the amplitude difference between received
waves at different sources, given by

∆εthr = m−1

(
K

Aa2

)
−m−1

(
K

Aa1

)
. (22)

If the attenuation factors a1 and a2 were the same, ∆εthr
would be zero. This would only happen if the source were
equally distant from the sensors. Note that ai and hence
∆εthr depend on the source position.

The average of the lower and upper TDOA bias bounds,
equal to ∆εthr, can be used as an estimator for the TDOA
bias. This estimator should show good performance if
∆εthr � T + 1

2f0
.

IV. SIMULATIONS

A. Time of arrival probability distribution

In order to verify if (9) successfully represents the time
of arrival distribution for a generic signal and to assess the
approximation in (16), a noisy signal was generated and
detected by one sensor in simulation. The signal ψ(t) was
modeled as in (17), and the chosen envelope m(t) = sin(πtL )
was a hanning window, as done in [20].

We used the following parameters: f0 = 150kHz (a pop-
ular resonance frequency for Acoustic Emission sensors),
L = 50µs, Aai = 0.04, F = 1MHz, K = 0.0178
(equivalent to a 45dB threshold) and τi = 100µs (equivalent
to a source whose distance from the sensor is 0.5m if
c = 5000ms ). Two simulations were run with different
noise levels, aiming to verify that the approximation in (16)
only holds for low level noise. For both simulations the
generated noise is Gaussian distributed with zero mean, and
its standard deviation is 10−3 in one simulation and 5×10−3

in the another one.
Figures 3 and 4 show the comparison between the dis-

tribution of the time of arrivals obtained in simulation, the
theoretical time of arrival pdf (9) and the approximated one
(16). These figures also show the value of t̄i, the time of
arrival that would be estimated if there was no noise.

The simulated time of arrival distribution is not Gaussian
shaped and coincides with the theoretical one. In both cases
the noiseless time of arrival does not coincide with the time
of arrival expected value. We conclude that the presence of a
zero-mean noise modifies the time of arrival expected value.
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Figure 3. Time of arrival (TOA) pdf with low noise level
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Figure 4. Time of arrival (TOA) pdf with high noise level

In the scenario where the noise variance is low (figure 3), the
approximated pdf from (16) seems to be a good estimation
of the theoretical one. However, when the noise variance
is high (figure 4), the approximated pdf only fits the main
lobe of the theoretical one. When the noise level is high, the
threshold can be triggered in different oscillation periods,
creating secondary lobes in the time of arrival pdf spaced
by half of the oscillation period (in this case, 1

2f0
= 3.33µs).

B. TDOA bias

Another simulation was performed aiming to verify if the
TDOA bias theoretical upper and lower bounds described in
(21) really limit the bias, as well as assess the performance
of the proposed TDOA bias estimator performance. Two
sensors were placed in the x-axis at x = 0m and x = 1m,
and the source position was swept from x = 0.01m to
x = 0.99m along the x-axis. The attenuation coefficient
was chosen as α = 2 m−1, and the noise is Gaussian-
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Figure 5. Simulated and estimated time difference of arrival and its
theoretical bounds for different source positions

distributed with standard deviation σ = 10−3. The rest of
the parameters are the same as in the previous simulation.

Figure 5 shows this simulation results. The TDOA bias
obtained in simulation respects the theoretical bounds de-
duced in (21). Moreover, the theoretical bias in this scenario
is T + 1

2f0
+ ∆εthr = 4.33µs+ ∆εthr, but the obtained bias

is much larger than 4.33µs in general, showing that most of
the bias is due to ∆εthr, i.e. caused by the different signal
amplitudes received by each sensor on account of the differ-
ence of attenuation. That is why the TDOA bias estimator
fits well the obtained TDOA bias curve. Another interesting
observation is that the bias is minimum at x = 0.5m,
when the wave propagation path length is the same for both
sensors, resulting in no attenuation difference.

CONCLUSION

We deduced the time of arrival probability distribution
expression for the fixed threshold method using a realistic
model for an acoustic waveform and signal propagation,
allowing the future development of new statistical TDOA
and source position estimators that can have better perfor-
mance than usual methods. A simplified and approximated
expression for the time of arrival pdf under low noise level
condition was also developed, making it possible to test
localization algorithms without the need to simulate the
signals using a more reliable model for the uncertainty on
the time of arrival estimates than the Gaussian distribution.
Theoretical bounds for TDOA bias were calculated under a
low noise level condition, and a TDOA bias estimator was
derived using the new bounds. The bounds can be used to
limit position error, aiding algorithms that group multiple es-
timated fault positions originated from the fault. The TDOA
bias estimator makes it possible to correct localization bias
and thus reduce the distance between the estimated and the
real source position. Eliminating the position bias might
also allow the application of the Cramer-Rao Lower Bound

and help the search for better unbiased TDOA and source
position estimators.
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