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Abstract—The DNA from several organisms is sequenced
conjointly in metagenomics. This allows searching for exogenous
microorganisms contained in the samples, with the goal of
studying the evolution and co-evolution of host-pathogen, namely
for building better diagnostics and therapeutics. However, the
quantity and quality of the DNA present in the samples is very
poor, pushing the responsibility of analysis improvements into the
development of better computational methods. Here, we develop
a new processing paradigm to infer the metagenomic composition
analysis based on the relative compression of whole genome
sequences. Using this method, we present the metagenomic
composition analysis of a sedimentary ancient DNA sample,
dated to 8,000 years before the present, from the Isle of Wight,
United Kingdom. The results show several viruses and bacteria
expressing high levels of similarity relative to the samples, namely
a circular virus similar to the Avon-Heathcote estuary virus 14
sequenced in New Zealand.

Index Terms—metagenomics, ancient DNA, data compression

I. INTRODUCTION

The DNA from several organisms is sequenced conjointly
in metagenomics. Metagenomics allows looking into ancestral
samples for determining composition, such as contamination
and, more important, ancient pathogens [1]. The latter may
help in inferring ancestral death causes, investigate the chang-
ing landscape of infectious disease through time, predicting
microbial communities or developing novel diagnostics and
therapeutics [2].

However, sequencing ancient remains from the Neolithic
period is a very difficult process, given the low quantity and
quality of DNA present in the samples. These are, usually,
correlated with post-mortem degradation. [3].

Additionally, there are strong computational challenges,
such as: dealing with a large volume of raw data (random
shuffled reads), with variable and very short read sizes, high
degree of contamination [4], very unbalanced composition in
terms of sample sizes and lack of a complete catalog of extant
and extinct species.

The identification of metagenomic composition, in ancestral
samples, is being addressed using large-scale approaches.
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Namely, because the use of 16S rRNA gene sequences (small-
scale) has, in aDNA, distinguishability problems and high
ambiguity on related organisms [5].

The are many approaches to detect and quantify metage-
nomic sample composition (see, for example, [6]–[9]), namely
through the measurement of similarity of the reads according
to a database with reference genomes. Recently, we have
proposed a compression-based approach [10] that is fast, ultra-
sensitive and without overestimating similarity. The later is
fundamental to provide quality, rigor, and consistency.

In this paper, we follow the line of the compression ap-
proach [10], improving and adding better protocols to new
case analysis, ancient DNA from submerged marine sediments,
dated to 8,000 years before the present, from the Isle of Wight,
United Kingdom.

These sediments include 8,000-year-old wheat [11] that
was challenged on the base of a lack of signal of cytosine
deamination relative to other datasets. Newer approaches, with
more rigorous controls, shown that these data meet the criteria
of authentic ancient DNA [12].

Here, rather than looking into eukaryotic genomes, we infer
the metagenomic composition of microorganisms, specifically
viruses, bacteria, archaea, and fungi. From the sediments, we
use two datasets, ERR567364 and ERR567365, with sizes 5.8
and 4.6 GB, respectively.

Further, we present our method, providing background and
introducing to the theory behind the Normalized Relative
Similarity (NRS). We provide filtering protocols to ensure data
quality. Then, we reveal the metagenomic composition of the
sedimentary ancient DNA, with an extension to localize the
regions with similarity relatively to the samples.

II. METHOD

The Kolmogorov complexity, also known as the algorithmic
information, enables to measure and compare the informa-
tion contained in different natural processes, namely DNA
sequences, that can be expressed using sequences of symbols
(strings) from a finite alphabet [13]–[15].

The Kolmogorov complexity differs from the Shannon
entropy [16] because it considers that the source, rather than
generating symbols from a probabilistic function, it creates
structures that follow algorithmic schemes. In order to reverse
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the problem, there is the need to identify the program and
parameters that generate the outcome [13].

The usage of small Turing machines [17] and lossless data
compressors [18] are two of the most successful implementa-
tions to approximate the Kolmogorov complexity.

The usage of compressors has also been applied to ap-
proximate the amount of information between two strings, x
and y, namely through the Normalized Compression Distance
(NCD) [14], [18], [19], regardeless if it is computed through
the conditional compression [20] or the conjoint compression
[18].

The need for a computational measure able to measure the
complexity of a string given exclusively other has led to a new
concept, that of relative algorithmic information [21]–[25].

Several approaches, to quantify the relative information,
have been proposed (e.g., [21], [24]–[28]) such as for handling
images [27], texts [24], [25], ECG (electrocardiographic) data
[29] and genomic sequences [30].

The relative information can be approached using relative
compressors regardless if they are based on dictionaries [21],
[24] or context models [25], [31]. These string compressors
aim to model and organize the data of a string, y, without
knowing the other string, x. Then, freeze the model of y
and, finally, measure the number of bits needed to describe
x. We call this operation, the compression of x relative to y,
as C(x‖y).

Using the C(x‖y) we are able to define the Relative
Similarity as

RS(x‖y) = |x| log2 |Θ| − C(x‖y) (1)

where |x| is the number of symbols in x and Θ the cardinality
of the alphabet. Finally, the Normalized Relative Similarity is
defined as

NRS(x‖y) =
|x| log2 |Θ| − C(x‖y)

|x| log2 |Θ|
= 1− C(x‖y)

|x| log2 |Θ|
. (2)

Note that, when x is equal to y, the NRS is approximately
one and, when x has completely different nature from y, the
NRS is approximately zero.

According to Fig. 1, to compute the NRS (Eq. 2), we use
as a y all the FASTQ reads and as a x, individually, each
microorganism genome extracted from multiple databases.
Since we only have a y, we freeze the model of y and compress
each x, without loading again the models of y. This approach
allows saving substantially in computational time.

We use a relative compressor, to compute C(x‖y), based
on [31], that applies soft-blending, with a decaying forgetting
factor, between three context models (CM) and two tolerant
CMs. The decaying factor used is 0.95 and a cache-hash of
200. The models have the following parameters:

• 1, tolerant CM: depth: 20, alpha: 0.1, tolerance: 5;
• 2, CM: depth: 20, alpha: 0.01, inverted repeats: yes;
• 3, tolerant CM: depth: 14, alpha: 1, tolerance: 3;
• 4, CM: depth: 14, alpha: 0.02, inverted repeats: no;
• 5, CM: depth: 13, alpha: 0.1, inverted repeats: no.

Fig. 1. Pipeline for the analysis of the metagenomic composition using
as input the ancient samples (ERR567364 and ERR567365) and a database
containing several reference organisms. The “BUILD” phase is according to
the subsection “Building the database (DB)”. The “INFER” phase is given by
the computation of Eq. 2. The “EVALUATE” phase is a detecting control of
intra-database similarities.

For more information on the parameters, meaning and the
genomic compression field, see [31], [32].

With the mentioned relative compressor each value of the
NRS is computed and sorted in a ranking, where higher
values stand for higher relative similarity. After, each ranked
sequence above a certain threshold is evaluated according to its
self -redundancy and preserved for further visualization. This
approach works as a control, enabling to detect low complexity
regions in x, for example, repetitive patterns that may be
related to errors in the sequencing or assembling process,
which may have a contradictory meaning through the NRS
calculation.

Then, we evaluate the reference genomes that had high rel-
ative similarity during the metagenomic inference, calculating
the NRS between each combination. This process enables to
detect patterns of similarity at an intra-database level. These
may identify, for example, that some of the high NRS values
are related to homologous parts between species. Notice that
here the time complexity is quadratic, however, the number
of elements is, usually, very low. Moreover, the size of the
genomes from the database is much smaller, frequently an
order of magnitude, than the input FASTQ samples.

However, before the inference and evaluation, we need to
build the database (DB) and trim/clean the reads to ensure
high quality and rigorous analysis. In the next subsections,
we show the procedure.

A. Building the database (DB)

For building the database (DB), we have downloaded the
entire NCBI database for viruses, bacteria, archaea, and fungi,
resulting in four datasets of several gigabytes (GB). For each
dataset, we have extracted only the sequences labeled as
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“complete genomes”. For downloading, extracting reads by
patterns, getting unique species sequences and building the
database, we have used our home-made software GOOSE
(https://github.com/pratas/goose).

B. Trimming and cleaning the FASTQ reads

Trimming and cleaning the reads is essential to prevent
reads with a short size, sequencing errors or with a low
quality given the process of DNA sequencing, that may create
inconsistent statistics. For cleaning the reads of ERR567364
and ERR567365 we have used GOOSE (G). We have trimmed
reads with a local sequencing score below the quality of 15 in
a window of 5. Then, we filtered the reads with size below
35 bases, with more than 5 unknown bases in each read, and
with an average (global) in the quality of the scores below 15.
The commands used were the following:

z c a t < f i l e >. f a s t q . gz \
| . / G−Fas tqMin imumLoca lQua l i t yScoreForward \
−k 5 −w 15 −m 33 \
| . / G−FastqMinimumReadSize 35 \
| . / G−Fas tqExc ludeN 5 \
| . / G−Fas tqMin imumQual i tyScore 15 \
> r e a d s . fq

where <file> represents ERR567364 and ERR567365. With
this approach, in ERR567364, from 16,501,223 we have
trimmed 840,341 and cleanned 24,196 reads (≈ 5% reads
filtered). While on ERR567365, from 12,634,237 we have
trimmed 797,554 and cleanned 26,868 reads (≈ 7% reads
filtered).

III. RESULTS

The sedimentary DNA datasets used, in this study, were ac-
cessed through the EBI (https://www.ebi.ac.uk/ena/data/view/
PRJEB6766), using the run accession identifiers ERR567364
and ERR567365. The sequencing machine used by [11] was
the Illumina MiSeq (Library layout: SINGLE). The database
(DB) of the reference microbial genomes was downloaded
from the NCBI (ftp://ftp.ncbi.nih.gov/refseq/).

All the results presented in this paper can be fully repli-
cated, under a Linux machine, using the two scripts pro-
vided at the repository: https://github.com/pratas/shikra. All
the computations ran in a Linux desktop computer with an
Intel®Core™i7-6700 CPU @3.40 GHz, with 32 GB of RAM
(without an SSD). Using this machine, the computation of the
metagenomic composition analysis of the datasets ERR567364
and ERR567365 cost near 98 and 67 minutes of real time,
respectively.

Fig. 2a and b depict the results of the metagenomic compo-
sition analysis with the highest ranked NRS genomes, with the
exception to the Enterobacteria phage phiX174 sensu lato, a
virus with 5,386 bases and without relevant similarities relative
to the potential genomes contained in the samples, that was,
clearly, identified as a contamination (NRS of 97.691). We did
not include this phage in the image given space constraints.

Besides this phage, we also found high similarities relative
to several viral and bacterial species. In the bacteria domain,

we have found similarity in several Streptomyces. These
express similar correlations between multiple species in this
genus as the Fig. 2-c depicts. There are other bacteria, namely
Marinobacter sp., Halomonas chromatiredunces, Propionibac-
terium acnes. The large majority bacteria are from water and
soil and, hence, they are according to the source of the samples
(underwater soil).

Regarding the viruses domain, we notice similarity relative
to Labidocera aestiva and Sicyonia brevirostris viruses, which
usually infects marine copepods and brown rock shrimps,
respectively. Another virus is the Marine gokushovirus, a
single strand (ssDNA) virus with near 4,080 bases and very
hard to isolate.

Curiously, we have detected 7% of similarity relative to
the human endogenous virus, that is absent of relevant intra-
database similarity. Contamination is the probable cause.

The highest NRS values from the figure are representative
of a class of ssDNA circular virus, namely the Avon-Heathcote
estuary virus [33]. The majority of the elements do not share
relevant similarity among them (Fig. 2-c). These genomes
were collected in Christchurch, New Zealand. When searching
for similar viruses at the NCBI, the top five, with the respective
identity, are:

• 81% - Beak and feather disease virus;
• 78% - Bat circovirus;
• 78% - Barbel circovirus;
• 77% - Lake Sarah-associated circular virus-27;
• 76% - Canine circovirus strain AZ4438-13;
Usually, these viruses work as the following procedure.

They penetrate into the host cell where, uncoating, the viral ss-
DNA genome penetrates into the nucleus. The viral ssDNA is
converted into dsDNA. The viral mRNAs are created through
the dsDNA transcription. Then, the viral mRNAs are translated
to produce the viral proteins. Notice that the replication may be
oriented by the replication associated protein (Rep). This may
occur by rolling circle producing ssDNA genomes. The newly
synthesized ssDNA can be converted to dsDNA, to serve as a
template in the transcription-replication processes, or to be
encapsidated by capsid protein and, finally, form complete
viruses that are released by cell lysis.

Specifically, we now center on the high NRS associated to
the Avon-Heathcote estuary virus 14 [33]. Fig. 3 depicts the
profiles of the relative information content, computed with the
compression of this virus relative to each of the samples. The
lower information content in the plot represents the regions
with higher similarity. When we associate these results with
the top map, containing the regions of the virus genes in
scale, we notice that the gene VM18 gp2 has very high
similarity relative to the samples. This is a gene which encodes
the replication associated protein (Rep). We also dismiss the
possibility of higher redundancy contained in the virus, namely
through high copy number, with the self -compression of the
virus, C(virus).

The other gene (VM18 gp1), associated with the putative
capsid proteins (Cap), has alternated regions with very high
and very low similarity. This gene, although with several
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Fig. 2. Metagenomic composition analysis of two datasets corresponding to samples of sedimentary ancient DNA (ERR567364 at left and ERR567365 at
right). a) identification of the name, GI and domain of the highest ranked NRS genomes; b) NRS values in percentage according to a); c) NRS between the
reference genomes from the database (database intra-similarity).

Fig. 3. Information and relative information content of the Avon-Heathcote estuary virus 14. The y-axis stand for information, while the x for the length. The
top map depicts the position and genes of the virus (VM18 gp1 and VM18 gp2); the top profile (blue) shows the information content of the virus relative to
the ERR567364 sample; the middle profile (brown) shows the information content of the virus relative to the ERR567365 sample; the bottom profile (green)
depicts the (self ) information content of the virus. All the profiles have been low-pass filtered with a Blackman window length of 5 bases.

similar parts has a very different evolution from the reference.
These findings are according with other new circular ssDNA

viruses identified in marine invertebrates that revealed high
sequence diversity and consistent predicted intrinsic disorder
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patterns within putative structural proteins [34].
One of the known hosts of these viruses is Paphies sub-

triangulata, a bivalve clam. In future works, we plan to
identify the host of this newly detected virus. Given the
diverse genomic characteristics of the virus, localization, and
water temperature, it may express new functionalities and
specific adaptation to the local environment and hosts, namely
parallelism in the co-evolution with the host.

IV. CONCLUSIONS

We have developed a new processing paradigm to infer
the metagenomic composition analysis based on the relative
compression of whole genome sequences, adding better quality
control protocols and introducing a way to localize where the
similarities occur.

Using this method, we have presented the metagenomic
composition analysis of two sedimentary ancient DNA sam-
ples, dated to 8,000 years before the present, from the Isle of
Wight, United Kingdom.

We have found several viruses and bacteria expressing high
levels of similarity relative to the samples. From these, the
most similar is a circular virus known as Avon-Heathcote
estuary virus 14. In this virus, we have localized both genes
where particularly the VM18 gp2 gene is very similar relative
to the samples. This gene is used in the process of protein
replication.
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