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Abstract—The goal of this work is to devise least mean square
(LMS) strategies for online recovery of time-varying signals de-
fined over dynamic graphs, which are observed over a (randomly)
time-varying subset of vertices. We also derive a mean-square
analysis illustrating the effect of graph variations and sampling
on the reconstruction performance. Finally, an optimization
strategy is developed in order to design the sampling probability
at each node in the graph, with the aim of finding the best
tradeoff between steady-state performance, graph sampling rate,
and learning rate of the proposed method. Numerical simulations
carried out over both synthetic and real data illustrate the good
performance of the proposed learning strategies.

Index Terms—Graph signal processing, online learning, sam-
pling on graphs, time-varying graphs.

I. INTRODUCTION

In recent years there was a large interest in developing
novel analysis and processing methods for signals defined
over irregular discrete domains, typically represented by a
graph, see, e.g., [1]-[3]. A fundamental task in graph sig-
nal processing (GSP) is to infer the values of a signal by
interpolating the samples collected from a known set of
vertices. To solve this task, machine learning methods typically
exploit smoothness of the graph signal over the graph, see,
e.g., [4]-[6], whereas GSP usually hinges on the bandlimited
signal model, i.e., signals that belong to the span of some
eigenvectors of the graph shift operator, see, e.g., [7], [8].
A first seminal contribution to sampling/interpolation theory
in GSP is given by [9]; the approach was then extended in
[10], [11]. The work in [7] derives conditions guaranteeing
stable and unique reconstruction of bandlimited graph signals.
Reference [8] connects uncertainty principle and sampling
of graph signals. The work in [12] proposes the so called
aggregation sampling, which involves successively shifting the
graph signal and aggregating its values at a given node. The
work in [13] devises strategies to design the sampling set based
on powers of the variation operator. Greedy sampling methods
with performance close to optimality are proposed in [14], and
also randomized sampling strategies are considered in [15],
[16]. Finally, adaptive sampling and interpolation methods that
are capable to handle time-varying graph signals have been
recently proposed in [17]-[20]. Specifically, [17] proposes an
LMS algorithm enabling online recovery and tracking from
a small number of smartly sampled observations. The LMS
method in [17] is then extended to the distributed setting
in [18], and to incorporate a probabilistic sampling scheme
in [19]. Finally, the work in [20] proposes a reconstruction
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framework to infer time-evolving signals over possibly time-
evolving topologies, leveraging kernels and spatio-temporal
dynamics of the observed data.

Contribution. The goal of this work is to propose an
online learning method for time-varying signals defined over
dynamic graphs, which appear in many applications such as,
e.g., brain networks, communication networks, transportation
networks, etc. Incorporating knowledge related to how the
graph varies over time in GSP algorithm is expected to lead
to enhanced performance of filtering/recovery tasks, see, e.g.,
[20], [21]. To this aim, we extend the methods proposed in
[17]-[19] to incorporate a random graph variation model,
where a nominal graph is perturbed such that each edge
has an assigned probability to be deleted (or added) at each
time instant. In particular, to derive an efficient algorithm and
simplify the analysis, we assume a small perturbation model
in order to quantify the effect of the graph variations in terms
of perturbation of the Laplacian eigenvectors. We also derive
a mean-square analysis that illustrates the role played by the
sampling and edge deletion probabilities on the performance.
Then, we design a sampling strategy aimed at minimizing
the graph sampling rate while imposing learning performance
constraints. Finally, we assess the performance of proposed
strategy via numerical simulations.

Notation. We indicate scalars by normal letters (e.g., a);
vector variables with bold lowercase letters (e.g., a) and
matrix variables with bold uppercase letters (e.g., A). \;(A)
represents the i-th eigenvalue of A. The trace of matrix A
is indicated with Tr(A); diag(a) is a diagonal matrix having
a as main diagonal. The superscript 7/ denotes the hermitian
operator. E{-} represents the expectation operator. A set of
elements is denoted by a calligraphic letter (e.g., S), and |S]
represents the cardinality of set S.

II. BACKGROUND

In this section, we recall some basic definitions and theo-
retical results that will be largely used along the paper.

A. GSP Basic Tools

A graph G = (V,€) is composed of a set of N vertices
V = {1,2,...,N} and a set of weighted edges £. A signal
a defined over G associates a complex number (vector) to
each vertex belonging to the set V, ie., x : V — C. The
structure of G is typically described by a graph-shift operator
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S, which is an N x N matrix, whose elements can be non-
zero only if ¢ = j or the link (j,¢) € £. The sparsity pattern
of matrix S captures the local structure of G, and common
choices for S are the adjacency matrix [2], the Laplacian
[1], and its generalizations [13]. In this paper, we choose
the undirected Laplacian L as the graph-shift operator, which
admits the decomposition L = UAU* for some eigenvector
matrix U = [uq,...,uy]| and diagonal matrix A. Then, the
Graph Fourier Transform (GFT) of a signal x is defined as its
projection onto the set of eigenvectors {u;};—1.. n [1], ie.,
GFT(x) = Uf x. Perfect recovery of a graph 51gna1 from its
samples is possible if x is bandlimited in the graph frequency
domain, i.e., we have:

x=Ugrsr, (D

where Ur € CNV*I7 collects the graph Fourier vectors asso-
ciated with a subset of frequency indices F, and sz € C7|
are the corresponding graph frequency coefficients. Thus, F
denotes the support of the signal in the graph Fourier domain.

B. Small Perturbation Analysis on Graphs

In this paragraph we recall approximated formulas for the
eigendecomposition of a perturbed Laplacian L + AL, where
L denotes the Laplacian associated with a nominal graph G,
and AL is a matrix representing a small perturbation of G, see,
e.g. [22], [23]. We denote by A\; = A; + A)\; the perturbed i-th
eigenvalue, and by u; = u; + Aw, its associated eigenvector.
If one link m € & fails the perturbation matrix can be written

as AL(m) = —a,al,, where a,, = [a,,(1), -+ ,an(N)]T €
RY has all entries equal to zero, except for a,,(i,) = 1
and a,,(fm) = —1, with 4, and f,, denoting the indexes of

the initial and final vertices of the failing edge. In case of
addition of a new edge, the perturbation matrix is simply the
opposite of the previous expression, i.e., AL(m) = a,al,
Also, the perturbation matrix associated with the simultaneous
deletion of a small set of edges is AL = - g, anal,
where &, denotes the set of perturbed edges. Exploiting a
first order approximation, in the case all eigenvalues of the
nominal Laplacian L are distinct, the following formulas for
the perturbed eigenvalues and eigenvectors hold [22], [23]:

ul
uz—uz+z ALul

S 3)

Thus, from (2)-(3), the perturbatlons associated with the
deletion of one edge m € £ are:
AXi(m) = ul AL(m)u; = —ul aal u;
= _[ui(fm) - ui(im)]2 “4)
N T N T T
- u; AL(m)u; US Ay Qg U
Aum) = 3 ST w T
J=2,j#i J j=2,j#i J
N ; )
_ [ (i) = wj (f)][ti (fin) — vi(im)]
= Z u;. (5
. Ai —Aj
J=2,j#i
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Within the limits of validity of this first order analysis, the
perturbation resulting from the deletion of multiple edges in
&p is the sum of all the perturbations, i.e.,

=) A\(m

meé&y

and Au; = Z Au;(m).  (6)

meé&,

In the case we perturb the graph by adding some edges, the
perturbation writes again as in (6), but with opposite sign.

III. ONLINE LEARNING OF SIGNALS OVER
DyNAMIC GRAPHS

Let us consider a time-varying signal x[n] € CV defined
over the dynamic graph G[n] = (V,&[n]), where n is the
time index, V is the fixed set of vertices, and £[n] is the
time-varying set of edges. At each time n, noisy samples of
the signal are taken over a (randomly) time-varying subset of
vertices, according to the following model:

y[n] =Dspn) (z[n] +v[n)), (7)

where Dgp,) = diag{d;[n]}Y, € RY¥*Y is a random
sampling operator over the dynamic vertex set S[n], such
that its diagonal elements are equal to 1 if ¢ € S[n], and
0 otherwise; and w[n] € C¥ is zero-mean, spatially and
temporally independent observation noise, with covariance
matrix C,, = diag{o?,...,0%}. The broad goal of this paper
is to recover the time-varying graph signals x[n] from the
noisy, partial, and streaming observation in (7), in an online
fashion and with limited complexity per time slot n. To this
aim, we build an online estimator that exploits the sequence
of dynamic graphs G[n] to interpolate the time-varying signal
from the collected samples. At each instant n, we assume to
observe the graph variations, which evolve over time as:

=L~ Z anal, 3

meé&p[n]

L{n] = L + AL[n

such that the observed Laplacian at time n, i.e., L[n], can be
expressed as the sum of the Laplacian L, associated with a
nominal graph G = (V,€), plus a perturbation that involves
the deletion of a (small) set £,[n] C & of edges.! Then,
according to (8) and to the analysis in (3), (5), in the case
of small perturbations, the eigenvector matrix U[n] of the
instantaneous Laplacian L[n] can be approximated as:

=U+ Z Zm 7717 9

meE

Uln] = U+ AU

where z,,[n] is a Bernoulli random variable that is equal to
1 if m € &,[n], and 0 otherwise; U € CN*N collects the

N
eigenvectors of L, and B,, = {bgn)} € CN*N where
i3

b(m) [uj (Z’m) — uj(fm)”ui(fm) —

ui(im)] )
) )\i _ >\j (1 - 51])7 (10)

'Model (8) might be easily extended to incorporate a further perturbation
term due to the addition of edges to the nominal graph. However, for
simplicity, in this paper we consider only a random edge deletion model.
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for all 4,5 = 1,...,N, where J;; denotes the Kronecker
delta. In particular, to recover the time-varying signal x[n]
from the sampled observations in (7), from (1) and (9), we
exploit a parsimonious representation of the signals on a
basis composed by the sequence of approximated eigenvector
matrices U[n] in (9), but considering only a subset F of
columns (frequency indexes), i.e.,

meé€

(1)

where B, € CN*I71 represents the collection of columns
of B, associated with the graph frequency indexes . Thus,
from (7) and (11), following an LMS approach [24], we seek
for the optimal GFT vector say, e.g., sr € clF ‘, that solves
the following optimization problem:

- 2
min E HDs[n] (y[n] — U]:[’n,}S]:) H

SF

12)

where E(-) denotes the expectation operator. An LMS-type so-
lution iteratively solves (12) by means of a stochastic steepest-
descent _procedure exploiting only instantaneous information
{y[n], Ux[n|},. Thus, letting Z[n] be the current estimate
of signal x[n], the LMS method evolves as illustrated in
Algorithm 1, where > 0 is a fixed step-size, and we have
exploited the fact that Ds(,,) is an idempotent operator.

Algorithm 1: LMS on Dynamic Graphs

Data: (y[n], Uz[n])nso. Start with random 3x[0]. Given a
(small) step-size p > 0, for each time n > 0, repeat:

Z[n] = Urn]sr[n]

8r[n+ 1] = 8[n] + 1 Ur[n] "Dspyy (yln] — Uzln]s[n))

__ At every iteration n, given the current values of 5x[n] and
U x[n], the first step of Algorithm 1 provides an estimate Z[n|
of the graph signal. Then, the second step updates the estimate
Sx[n] of the GFT vector. An important feature of the proposed
approach is that, thanks to the small perturbation assumption
that has led to (11), the algorithm does not need to recompute
the eigenvectors of the dynamic graph at each time, but can
update Uz[n| via (11), thus reducing the complexity from
O (|FP?|S[n]|) to O(|F||S[n]|). Furthermore, as we will see
in the sequel, the mean-square analysis of the algorithm will be
greatly simplified. Algorithm 1 extends the methods previously
proposed in [17], [19] for adaptive GSP, by incorporating the
temporal variations of the graph defining the signal support.

A. Mean-square Analysis
To carry out a mean-square analysis of Algorithm 1, we
assume the following model for the graph signal variation:
z[n] = Urln)ss = Ursy + Z Zm[NUBE 8%, (13)
meé&

for all n > 0, where s° € CIFI¥1. Also, we introduce an
independence assumption on the random sampling process and
the random edge deletion model.
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Assumption 1 (Sampling process): The stationary sampling
process {d;[l]} is temporally and spatially independent, for
alli=1,...,N and [ < n. |

Assumption 2 (Edge deletion model): The stationary edge dele-
tion process {z,,[l]} is temporally and spatially independent,
forallm e £ and | < n. [ |

Let s7[n] = Sr[n] — s% be the error vectors on the GFT at
time n. Thus, using (7) and (13) in Algorithm 1, we obtain:

srln+1] = (I - HGF[N]HDS[n]ﬁf[”D sx[n]

+u Uz Dgpln]. (14)

Starting from (14), we derive a mean-square analysis of
Algorithm 1, which relies also on the following assumption.

Assumption 3 (Small step-size): The step-size p is chosen
sufficiently small so that terms that depend on higher-order
powers of ;1 can be ignored. |
Let us now define some quantities that will be useful in the
sequel. Let p = [p1,...,pm|’ be the sampling probability
vector, where p; = E{d;[n]} denotes the probability to sample
node 4 at time n. Also, let (,;, = E{z,,[n]} be the probability
that edge m is deleted at time n, and r,,,; = E{z;,[n]z[n]} =
CmOmi + Cn( (1 — 6,y). Finally, let us define the following
matrix quantities:

H(p) = E{ﬁf[n]HDS[n]ﬁ]:[n]} = Ulldiag(p)Ur

+ Z (ngdiag(p)Unym + Z Cmef’,mUHdiag(p)Uf
meé& me&

+ 3> ruBE,, U diag(p)UBF
me€ le&

H;(p) = E{ﬁ]-'[n]HDS[n]U[n]v[n]HDS[n]ﬁ]—'[n]}
= Ufdiag(p)C,Ur + Y (mB¥,,, U diag(p)C, U
meE€

+ Z C’ngdiag(p) CU UB]—",m
me&

+ Z Z rouBY ,,, U diag(p)C, UB£ .
me€ le&

15)

(16)

The main results are summarized in the following Theorem.

Theorem 1: Let Assumptions 1, 2, and 3 hold. Then, under
the observation model (7), (13), for any initial condition,
Algorithm 1 is stable in the mean-square error sense if the
sampling probability vector p and the step-size | are chosen
such that matrix H(p) in (15) is invertible, and

2)\min (H(p))
Ao (H(p))

Furthermore, the mean-square deviation (MSD) writes as

0<p< (17)

MSD(p) = lim E[57[n]|

= gTr [H(p)'Ha(p)] + O(1?),  (18)
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Fig. 1: Graph Topology and optimal sampling probabilities.

and the convergence rate is well approximated by

a(p) =1 = 2pmin (H(P)). (19)
Proof. The proof follows similar arguments to those used in
[19], and is omitted due to lack of space. |

B. Sampling Strategies

The mean-square analysis in Sec. III-A illustrates how
the convergence rate and the mean-square performance of
Algorithm 1 are affected by the sampling probability vector
p [cf. (18) and (19)]. Then, following a sparse sensing
approach [25], [26], the goal of this Section is to propose
sampling strategies aimed at designing the probability vector
p that optimizes the tradeoff between graph sampling rate and
learning performance of Algorithm 1. In the sequel, invoking
Assumption 3, we neglect the term O(p?) in (18), and consider
(19) as the convergence rate.

The proposed strategy aims at finding the sampling proba-
bility vector p that minimizes the sampling rate over the entire
graph, while guaranteing a target performance of Algorithm 1
in terms of MSD in (18) and convergence rate in (19). The
optimization problem can be cast as:

. T
oty 1P
1—a
st Amin (H(p)) > o (20)

T (H(p) ' Ha(p) < =
The first constraint imposes that the convergence rate of the
algorithm is larger than a desired value, i.e., « in (19) is
smaller than a target value, say, e.g., @ € (0, 1). The second
constraint guarantees a target mean-square performance, i.e.,
the MSD in (18) must be less than or equal to a prescribed
value, say, e.g., v > 0. Problem (20) is non-convex due to
the non-convex constraint on the MSD. To handle the non-
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Fig. 2: Learning curve of Algorithm 1, where sampling prob-
abilities are designed solving (20) for different values of .

convexity of (20), we proceed similarly to [19], i.e., we exploit
an upper bound of the MSD in (18) given by:

a b Tr(Hz(p))
2 Amin (H(p))7

for all p € RY. Replacing function (18) with (21) in problem
(20), not only the second constraint in (20) is always satisfied,
but also the problem becomes convex and its global solution
can be found using efficient numerical tools [27].

MSD(p) < MSD(p) 21

IV. NUMERICAL RESULTS

Let us consider a graph composed of 45 nodes, whose
nominal topology is illustrated in Fig. 1, and such that each
edge has a certain probability (,,, = 0.2, for all m € &, to be
deleted at every time instant. The observation noise in (7) is
zero-mean, Gaussian, with a diagonal covariance matrix such
that each element is chosen uniformly random between 0 and
0.01. In Fig. 1, we also report the optimal sampling probability
vector obtained solving problem (20) [with the upper bound
in (21)], and considering & = 0.95, |F| = 8, u = 0.1, and
v = —33 dB. As we can notice from Fig. 1, the method
selects a sparse sampling probability vector in order to attain
the requirements on the MSD and the learning rate. Then, to
validate the theoretical results derived in Sec. III-A, in Fig. 2
we report the learning curve (in terms of MSD) of the LMS
on Dynamic Graphs (cf. Algorithm 1), where the sampling
strategy is selected solving problem (20) for different values of
v, while setting a target performance on the learning rate given
by & = 0.95. The curves are averaged over 100 independent
simulations. As we can see from Fig. 2, the numerical results
match well with the theoretical findings.

Finally, we test the adaptation capability of the proposed
method on a road network example. We consider an inter-
section among two roads in the center of Rome, Italy. We
have placed N = 18 landmarks (nodes of the graph) over the
streets in a regular fashion, and connected adjacent landmarks
on the same lane and at the junctions. A traffic light alternates
the traffic over the two roads, thus producing a periodical
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Fig. 3: Transient NMSD for different graph dynamics.

and known variation of the graph topology. The graph signal
represents the number of of cars passing through the landmarks
during a period of 20 seconds, and was obtained using a
realistic simulator of urban mobility, namely, SUMO [28].
The goal is to infer the traffic situation from a small number
of samples, exploiting the known variation of the graph. We
consider |F| = 4, and we take a number of samples equal
to |S| = 8. We consider a situation where the traffic light
switches two times over the simulation period. Thus, in Fig.
3, we illustrate the behavior of the normalized MSD (NMSD),
ie., ||Z[n] — x°[n]||?/||z°[n]||?, with x°[n] denoting the true
signal present at time n, considering the case where we exploit
the known temporal variability of the graph, and the case
where instead we assume a nominal graph fixed over time
and agnostic of the traffic light. As expected, we can see from
Fig. 3 how, exploiting the temporal variations of the graph,
we obtain a large gain with respect to using a fixed graph.

V. CONCLUSIONS

In this paper, we have introduced a novel LMS strategy for
learning time-varying signals over dynamic graphs. Assuming
a small perturbation model, we have derived a mean-square
analysis that assessed how the temporal variation of the
graph and the sampling strategy affect the performance of
the proposed method, thus paving the way to the formulation
of an optimization criterion aimed at selecting the sampling
probabilities as an optimal trade-off between graph sampling
rate and learning performance of the algorithm. The resulting
non-convex problem was then simplified in order to obtain a
convex, but approximated, surrogate problem. Finally, some
numerical tests were presented to verify the theoretical find-
ings and assess the performance of the proposed approach.
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