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Abstract—In this paper, we propose two multi-channel exten-
sions of non-negative matrix factorization (NMF) for acoustic
event detection. The first method performs decision fusion on the
activation matrices produced from independent single-channel
sparse-NMF solutions. The second method is a novel extension
of single-channel NMF, incorporating in its objective function
a multi-channel reconstruction error and a multi-channel class
sparsity term on the activation matrices produced. This class
sparsity constraint is used to guarantee that the NMF solutions
at a given time will contain only a few classes activated across
all channels. This indirectly forces the channels to seek solutions
on which they agree, thus increasing robustness. We evaluate the
proposed methods on a multi-channel database of overlapping
acoustic events and various background noises collected inside a
smart office space. Both proposed methods outperform the single-
channel baseline, with the second approach achieving a 15.4%
relative error reduction in terms of F-score.

Index Terms—Acoustic event detection, multi-channel fusion,
non-negative matrix factorization

I. INTRODUCTION

Acoustic event detection (AED) constitutes a significant part
of computational auditory scene analysis, with the purpose
of automatically detecting and identifying meaningful sound
events present in an audio recording. Among others, popular
applications of AED include smart home environments, mul-
timedia indexing and retrieval [1], monitoring for healthcare
[2], and security and surveillance systems [3].

Several methods have been developed in recent years for
both the isolated and the more challenging overlapped AED
scenarios. Hence, one can find in the literature AED systems
employing hidden Markov models (HMMs) [4], probabilis-
tic component analysis models [5], the generalized Hough-
transform [6], deep neural networks [7]-[9], and non-negative
matrix factorization (NMF) [10], [11], among others.

All aforementioned approaches have been primarily applied
to single-channel AED. However, whenever available, exploit-
ing information from multiple channels can be valuable. In
[12] various channel fusion methods were proposed within
an HMM based framework, while in [13] bag-of-words based
features from different channels were used to train a global
random forest classifier. Regarding neural network based
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methods, in [14] multi-channel exploitation was performed
either by feeding the network with inputs from multiple
channels or by extracting multi-channel spatial features. In
NMF related approaches, multi-channel extensions have also
been considered, but mostly targeting blind source separation
[15]-[19].

In this paper we propose two multi-channel extensions of
NMF suitable for overlapping AED. NMF-based methods,
due to their natural ability to detect multiple events occur-
ring simultaneously, have demonstrated robust performance in
related tasks [20]. In this work, the single-channel baseline,
upon which we build our methods, is a sparse-NMF based
approach performing detection at frame-level. Our first method
combines the different microphones at decision level by sum-
ming their activation matrices to obtain an average confidence
for the activation of each class. Our second method considers
the optimization of a novel objective function containing a
multi-channel KL-divergence reconstruction term and a multi-
channel class sparsity term. At each time frame, this class
sparsity term forces the NMF solutions to contain only a small
number of activated classes in total across all microphones.
In this way, the updates of the activation matrix for each
microphone at each iteration are informed by the activations
from the other microphones too, and this leads to robust
solutions in which most of the microphones should agree.
For our experiments we use the publicly available ATHENA
database [21], which contains real multi-channel recordings
from a smart-office environment including sixteen acoustic
events and five types of background noise. The results confirm
the superiority of the proposed multi-channel approaches over
the single-channel baseline.

The remainder of the paper is organized as follows: Section
Il presents both the single-channel baseline and the two
proposed multi-channel approaches; Section III describes the
database and experimental framework employed and reports
our results; and, finally, Section IV concludes the paper.

II. METHODS

A. Single-Channel Sparse-NMF

The main idea behind the application of sparse-NMF for
AED is the linear decomposition of acoustic events into
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spectral atoms. Given the representation of events with non-
negative and approximately linear features (e.g., spectrogram,
filterbank energies), overlapping events can be decomposed
into atoms of individual events.

NMF seeks to determine a linear non-negative approximate
factorization of the observed feature matrix V € RISSN , by
the product V~ W -H, where W € RigR denotes the non-
negative dictionary matrix, and H € ngN represents the
non-negative activation matrix. Here P denotes the feature
dimensionality, /N the number of time frames, and R the
total number of event atoms in the dictionary matrix. Further,
sparse-NMF adds a sparsity constraint to the solution, usually
requiring sparse activations in matrix H [22].

For the m!" channel, given the observed matrix V,,, and the
dictionary matrix W,,, containing atoms for all acoustic events,
sparse-NMF derives the activation matrix H,,, by minimizing
the objective function:

Jm = D(V, Wi, Hy) + A[Hpy |4 (1

When employing the generalized KL-divergence error cost
function D, the solution to (1) can be obtained by means of
the iterative update:

H,, < H,, 0 {W] (V,, © (W,,H,,))} @ {W] 1y + A1y}

where ® and © denote element-wise matrix multiplication and
division, and 1y and 1y are matrices with all elements equal
to 1 and dimensions equal to V,,, and H,,, respectively. H,, is
initialized with random positive values, and for its computation
we apply 100 iterations.

After obtaining matrix H,,,, for each time frame, the activa-
tions for each class are summed across all their atoms resulting
in a new matrix H,, € Rg;N , where C' denotes the total
number of event classes. Finally, detection is performed by
thresholding, i.e., class c is considered active at time frame n,
if H/,(c,n) > 0, where 0y is a suitably chosen threshold.

Regarding the creation of dictionary matrix W,,, we use the
“exemplar” based method: Using extracted isolated training
instances from each event, we create the class-specific sub-
dictionaries Wgﬁ) € RI;(TRC, for ¢ = 1,...,C, by clustering
the available isolated instances with the K-means algorithm
(R, centroids are selected). The total dictionary W, is then
created by concatenating the C' sub-dictionaries, i.e., W, =

(WO WD e RER

B. Sum of Channel Activations

In NMF based methods, activations produced for each class
are directly related to the confidence about its existence. In this
multi-channel approach we combine the different channels at
the decision level, expecting more reliable results, compared
to that based on a single channel alone.

At first, each channel m acts independently from the others,
performing single-channel sparse-NMF by using its own ob-
servation matrix V,,, and dictionary matrix W,,, and outputs its
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activation matrix H,,,. Then, the activations from all channels
are averaged to obtain the final activation matrix Hy:

1 M
Hy =) Hy, 2)
m=1

where M is the total number of channels considered. Finally,
summing of activations per class and thresholding follow, as
in the single-channel case.

C. Multi-Channel NMF with Class Sparsity

In this approach we extend the objective function of single-
channel NMF in a multi-channel fashion. Towards this end,
we first transform the reconstruction error term to contain
the sum of KL-divergence errors from all channels. In this
case, in each reconstruction term, each channel uses a global
dictionary matrix W that is built similarly to the single-
channel case approach discussed at the end of Section II.A,
but with the modification that atoms are sampled for each class
from all training data across all channels. Further, we add a
multi-channel class sparsity constraint as a second term. This
constraint is used to regularize the NMF solutions so that, at
each time frame, only a few classes are activated across all
channels. As a consequence, the channels are forced to act in
a collaborative way and find solutions to which they agree.

The multi-channel objective function J is defined as:

M N
J =Y D(VuWHp) + XY Qb1 harm),  3)
m=1 n=1

0N

m,n

T
where H,,= [hn. 1, ..., hn n] and by, = | ...7h,(wc721 1T

i.e., hy p is the nt" column of the activation matrix H,,,. The
class-sparsity function € is defined as:

b

c M
Q1 ns oo harn) = D _log(e+ Y |8, [11)
c=1 m=1

where hfﬁ)n denotes the part of the activation column that is
related with the event class c. This function can be viewed
as a multi-channel extension of the term used in [23], [24] to
imply group sparsity. In our case groups are the event classes
considered.

By majorizing the second term of (3), we obtain the
following updates for activation matrices H,,, for all m €
{1,... M}, ce{l,..,C},ne{l,..,N}:

H,, « H,, © {W'(V,, © (WH,,))} )

M
i M2 WONE, 2T e D L) 9
m’=1
where € is a small positive constant and the column vectors
1, and 15, have all their elements equal to 1 and dimensions
P x 1 and R, x 1 respectively. In our experiments, H,, is
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initialized with random positive values, and the updates (4),
(5) are applied iteratively for 100 iterations.

From (5) it can be seen that, at each iteration, the update
for each channel is also affected by the activations of the other
channels. In particular, when the total activation across all
channels (as computed at the previous iteration) is low for
a given class, the activations of the mt" channel at the current
update are suppressed for that class. In (3), parameter \ tunes
the size of the impact of this class-sparsity constraint: high
values of A will lead to solutions with only a few different
classes activated at each frame.

After obtaining the M different activation matrices for all
channels, we compute the final activation matrix Hy as in the
previous method, using (2). Finally, we should note that the
dictionary matrix W that is used in updates (4) and (5) of H,,,
has its columns (atoms) normalized so that their elements sum
to 1.

It is worth mentioning that in our work we employ the
multiplicative updates approach for solving the NMF task,
mainly because of their widespread usage in related works
and also due to their high reproducibility. Alternative efficient
algorithms for solving the NMF task have also been proposed
and applied successfully in the literature [25]-[27].

III. EXPERIMENTS
A. Database

We perform our experiments on the ATHENA multi-modal
database [21], captured in a smart office environment. In total,
the dataset contains 240 one-minute long sessions of real
recordings divided into a training and test set. This database
is suitable for multi-channel overlapped AED, as it contains
speech plus fifteen acoustic events captured from multiple
microphones (20 in total) installed on the ceiling and walls
of the smart space (see also Fig. 1). The acoustic events are
categorized according to their average duration to long events
(“walking steps”, “cellphone ring”, “keyboard”, “glass fill”,
“coffee spoon”, “Skype call”, “cough”, “paper work”, “win-
dow open/close”) and short events (“mouse click”, “keys”,
“knock”, “chair moving”, “switch on/off”, “door open/close”).
To better approximate a realistic scenario, five different types
of acoustic backgrounds are also considered in the various
sessions (ambient noise, fan, radio music, vacuum cleaner,
silence). Highly overlapped scenarios (40% of speech over-
laps with other events) and adverse noise conditions make
this dataset challenging for overlapped AED. The ATHENA
database is publicly available .

B. System Implementation Details

Next, we provide details about the various parameters of
the systems described. Regarding audio feature extraction, we
employ 100 Mel-filterbank energies computed in windows
of 30 msec duration and with a 10 msec shift. Concerning
the number R. of atoms selected per class in the dictionary

Thttp://cvsp.cs.ntua.gr/research/athenadb
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Fig. 1. Floor plan of the smart office used in the ATHENA database
recordings. Microphones (black), speaker (green and yellow) and
event (blue) positions are depicted. Six microphones were used in
our experiments, marked with a red square (from [21]).

and the sparsity parameter A\, we experimented with various
combinations: R. € {20,40,60,80,100,120,150} and A €
{0.5,1,2,4,8,16,32}. Also for better background modeling,
we extract and store in the dictionary R. atoms for each type
of background considered.

As a post-processing stage for the detection system, after
thresholding the activations with 6, for each class, we unify
active segments that occur with time distance less than t,, sec
and delete active segments with duration shorter than ¢, sec.
All parameters were optimized on the development set (see
Section II1.C).

Finally, for our multi-channel approaches we employ the
six microphones that are highlighted with red marks in Fig.
1. The purpose of our selection was to uniformly sample the
acoustic space.

C. Experimental Setup

In our experiments we have considered three types of acous-
tic backgrounds, namely ambient noise, fan, and silence, which
are more common in real-life scenarios. These backgrounds
cover roughly 1 hour of recordings in the training set and
1 hour in the test set. From the corresponding part of the
training set, we select isolated instances of events and use
them for dictionary building. We also divide the test set into
development and evaluation sets, of 30 min duration each.
The optimization of all system parameters was performed
on the development set. The metrics used for evaluation and
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comparison of our methods are frame based Recall, Precision,
and F-score.

D. Results

The three methods are evaluated and compared in the 30
min long recordings of the evaluation set. As a baseline for
our experiments we consider the average single-channel F-
score, computed as the mean of the F-scores of the different
single-channel NMF systems (6 in total). This corresponds to
the expected performance we would get if we chose randomly
a microphone in the smart space. As an alternative baseline,
we also show the results of the oracle single-channel, i.e. the
best-performing channel for the given evaluation set (central
microphone of the ceiling in our case). In Fig. 2 the results
in terms of Recall, Precision, and F-score are depicted for
the baseline and the two multi-channel approaches. First, we
can observe that both multi-channel approaches outperform the
single-channel baseline, achieving 6.80% and 15.44% relative
error reduction in terms of F-score (the sum-of-activations
and multi-channel NMF methods, respectively). Further, both
multi-channel methods show significant improvements over
the oracle single-channel result. Also, multi-channel NMF
with class sparsity performs better than the sum-of-activations
method, achieving 9.27% relative error reduction. Finally, the
multi-channel NMF approach shows the best results in all
metrics, performing also at a slightly more balanced point
between Recall and Precision than the sum-of-activations
method.

We can also observe that, in general, AED performance
is relatively low, indicating the challenging nature of the
database. Such can be primarily attributed to the highly
overlapped conditions, the adverse background noise, and the
large variety of event classes considered.

Finally in Fig. 3, we can observe the effect of class sparsity
parameter A on the solutions for the activation matrices. In
particular we show the activations of the final activation matrix
H;, averaged in time, for a given time interval where two
acoustic events overlap (“speech” and “cellphone ring”). We
can see that, when increasing the class sparsity parameter,
the solutions become more concentrated on the atoms of the
given events. When )\ becomes lower, atoms from more classes
become activated, leading to false alarms in the detection. In
the given example, when A=16 only one false alarm occurs
for event “cough”, while for A\=2 false alarms also occur for
events “Skype call”, “window open/close”, and “mouse click”.

IV. CONCLUSIONS

In this paper, we proposed two multi-channel NMF ap-
proaches for overlapped AED. The first method combines at
decision level the independent sparse-NMF outputs from dif-
ferent channels. The second method considers the optimization
of a novel multi-channel NMF objective function including
a class sparsity term. Such term introduces robustness, as it
forces the channels to activate only a few classes that they
agree on. Both proposed multi-channel methods outperformed
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Fig. 2. AED results on the evaluation set of the ATHENA database,
depicted in terms of Recall, Precision and F-score for the three
different approaches of Section II.
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Fig. 3. Activations across atoms in activation matrix H; of the multi-
channel NMF method. Activations are averaged for a given time
interval of 2 sec in duration and shown for two different values of
sparsity parameter A. Events with green colors overlap in the ground
truth annotation of this interval.

the single-channel baseline, with the second achieving satis-
factory improvements.

In future work, we plan to investigate the performance of
our methods over single-channel alternatives on additional
databases, suitable for overlapped AED. We will also in-
vestigate how the number and positions of the microphones
selected affect the performance of our methods. Dictionary
building using multiplicative updates occurring with our spar-
sity term will also be tested in addition to the “exemplar”
based method considered here. Finally, it will be interesting
to incorporate our novel multi-channel NMF approaches into
other single-channel NMF based frameworks that have been
proven robust for AED, such as convolutional NMF [28].
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