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Abstract—Estimating the number of clusters in an observed
data set poses a major challenge in cluster analysis. In the
literature, the original Bayesian Information Criterion (BIC) is
used as a criterion for cluster enumeration. However, the original
BIC is a generic approach that does not take the data structure
of the clustering problem into account. Recently, a new BIC
for cluster analysis has been derived from first principles by
treating the cluster enumeration problem as a maximization
of the posterior probability of candidate models given data.
Based on the new BIC for cluster analysis, we propose a target
enumeration and labeling algorithm. The proposed algorithm is
unsupervised in the sense that it requires neither knowledge on
the number of clusters nor training data. Experimental results
based on real radar data of human gait show that the proposed
method is able to correctly estimate the number of observed
persons and, at the same time, provide labels to them with
high accuracy. It is shown that, in terms of cluster enumeration
performance, the proposed algorithm outperforms an existing
cluster enumeration method.

I. INTRODUCTION

Model selection deals with selecting a statistical model that
adequately explains the observed data from a set of candidate
models. Cluster analysis is one of the prominent fields of
study where model selection methods have been extensively
used. Estimating the number of clusters, also called cluster
enumeration, poses a major challenge in cluster analysis.
Many state-of-the-art methods, e.g. [1]–[6], solve this problem
using the original Bayesian Information Criterion (BIC) as
derived in [7], [8]. However, the original BIC is a generic
criterion that does not include information about the structure
of the observed data during model selection. Recently, a new
BIC has been derived from first principles for estimating the
number of clusters in an unsupervised learning framework
by incorporating the data structure of the clustering problem
[9]. For cluster analysis, this leads to a BIC that is different
from the BIC expression derived by Schwarz [7], [8]. A finite
sample refinement of the BIC expression proposed in [9] has
been made in [10].

This work is supported by the LOEWE initiative (Hessen, Germany) within
the NICER project. The work of F. K. Teklehaymanot is supported by the
‘Excellence Initiative’ of the German Federal and State Governments and
the Graduate School of Computational Engineering at Technische Universität
Darmstadt. The work of M. Muma is supported by the ‘Athene Young
Investigator Programme’ of Technische Universität Darmstadt. The work of
M. G. Amin is supported by the Alexander von Humboldt Foundation, Bonn,
Germany.

In this paper, we will demonstrate that cluster enumeration
can be a valuable entity for advanced radar technologies
that monitor human gait. In contrast to other remote sensing
modalities, such as video cameras, radar preserves privacy,
is insensitive to lighting conditions and clothing, and can
penetrate common materials. By incorporating the two recently
proposed Bayesian cluster enumeration criteria [9], [10], we
propose a target (person) enumeration and labeling algorithm
that automatically estimates the number of targets from the
radar data and labels individual targets at the same time. Target
enumeration and labeling is achieved by exploiting the fact
that feature vectors extracted from the gait of the same target
create a cluster in feature space. The proposed method is
unsupervised in the sense that it does not require training data
nor prior knowledge on the number of clusters (targets). Using
radar data of normal human walk, we are able to estimate the
correct number of targets and label them with a high accuracy
despite short observation times. To the best of our knowledge,
this is the first work towards utilizing unsupervised learning
methods to jointly estimate the number of targets (persons)
and to label them using radar-based gait data.

Previous works on radar-based sensing of humans are
mostly concerned with detection or activity recognition, see
e.g. [11]–[13]. On the other hand, identification of humans by
the use of radar is relatively recent [14]–[17], where we note
that there are similar works based on sonar data [18], [19].
However, state-of-the-art methods on human identification
require knowledge of the number of targets and availability of
training data. These requirements are stringent in real world
applications, where the number of observed targets is mostly
unknown and possibly time varying. That is why, amongst
other reasons (see [20] for a survey on human sensing), auto-
matic identification of human subjects remains a challenging
task for many ambient intelligent systems with application to
surveillance, security, and smart homes.

The remainder of the paper is organized as follows. Sec. II
formulates the problem of estimating the number of targets
and labeling them at the same time using radar human gait
measurements and Sec. III discusses the proposed method.
Experimental results on target enumeration and labeling using
data from a 24GHz radar system is provided in Sec. IV.
Finally, conclusions are drawn and future work is briefly
discussed in Sec. V.
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Notation: lower- and upper-case boldface letters denote
column vectors and matrices, respectively; calligraphic let-
ters represent sets; R denotes the set of real numbers; Z+

represents the set of positive integers; ln denotes the natural
logarithm; > stands for vector or matrix transpose; |Y | denotes
the determinant of the matrix Y ; vec(Y ) represents the
stacking of the columns of the matrix Y into a long column
vector; ⊗ denotes the Kronecker product.

II. PROBLEM FORMULATION

Radar data of human motions is typically analyzed in
the time-frequency domain, since it contains multiple signal
components and is highly non-stationary. The spectrogram is
frequently used to represent the characteristic micro-Doppler
signatures of humans (targets) in the joint time-frequency do-
main [11], [12], [21]. For further processing, the spectrogram
of a target’s motion is often considered as an image, which is
denoted by S ∈ Rf×t, where f is the number of pixels along
the Doppler frequency axis and t is the number of pixels along
the time axis. Assuming that there are K targets, we collect
Nk images per target. The total number of images is given by
N , such that N =

∑K
k=1Nk. Each image Sn, n = 1, . . . , N,

is vectorized to create a long column vector sn ∈ Rd×1, where
d = ft, which is referred to as feature vector. In the set of
feature vectors S , {s1, . . . , sN} ⊂ Rd×N , often, d > N ,
which creates a sample scarce scenario.

In order to solve this problem, we use a probabilistic Prin-
cipal Component Analysis (PCA) that automatically reduces
the dimension of S from d to r, where r < d [22]. The new
set of feature vectors with reduced dimensions is given by

X = V >S, (1)

where X ⊂ Rr×N and the column vectors of V ∈ Rd×r

are the eigenvectors of S corresponding to the first r eigen-
values such that λ1 > λ2 > . . . > λr > 0. The set
of feature vectors X can be partitioned into K clusters,
where a cluster corresponds to the feature vectors collected
from a single target, such that X , {X1, . . . ,XK}. The
clusters Xk, k ∈ K , {1, . . . ,K}, are independent, mutually
exclusive, and non-empty. A family of candidate modelsM ,
{MLmin

, . . . ,MLmax
} is given, where Lmin and Lmax are the

specified minimum and maximum number of clusters, respec-
tively. Each candidate model Ml ∈ M, l = Lmin, . . . , Lmax

and l ∈ Z+, represents a partition of X into l clusters with
associated parameters Θl = [θ1, . . . ,θl] ∈ Rq×l. Our research
goal is to estimate the number of clusters (targets), K̂, in X
given that the true number of clusters satisfies the constraint
Lmin ≤ K ≤ Lmax. Once the number of clusters is estimated,
we provide unique labels to the clusters (targets). Hence, the
proposed method combines automatic cluster enumeration and
labeling in an unsupervised learning framework.

III. PROPOSED METHOD

We propose a target enumeration and labeling algorithm that
automatically estimates the number of targets and provides
them with unique labels using radar data of human gait.

A. Choice of the Number of Principal Components

We automatically reduce the dimension of our set of feature
vectors S from d to r, where r < d, using a probabilistic PCA
[23] that approximates the likelihood function of S given the
number of principal components c = Cmin, . . . , Cmax [22].
The likelihood function is given by

p(S|c) ≈ N− 1
2 (z+c)

(∑d
a=c+1 λa

d− c

)− 1
2N(d−c)( c∏

a=1

λa

)− 1
2N

,

(2)
where λa, a = 1, . . . , d, are the eigenvalues and z = d(d −
1)/2− (d− c)(d− c− 1)/2.

Once the likelihood function is evaluated for each candidate
number of principal components c = Cmin, . . . , Cmax, the
correct number of principal components is selected as [22]

r = argmax
c=Cmin,...,Cmax

ln p(S|c). (3)

B. Bayesian Cluster Enumeration and Labeling Algorithm

The Bayesian cluster enumeration and labeling algorithm
simultaneously estimates the number of clusters and provides
them with unique labels. We use the two-step cluster enumera-
tion algorithm proposed in [9], [10] to estimate the number of
clusters in X . In this algorithm, the first step is to cluster the
data set X via the Expectation-Maximization (EM) algorithm
using the number of clusters specified by each candidate model
Ml ∈ M, where l = Lmin, . . . , Lmax. This results in cluster
parameter estimates, such as cluster centroids µ̂m, covariance
matrices Σ̂m, and number of feature vectors per cluster Nm,
for m = 1, . . . , l. In the second step, given the estimated
cluster parameters, one of the two recently proposed Bayesian
cluster enumeration criterion [9], [10] is calculated for each
candidate model Ml ∈M via

BICN(Ml) =
l∑

m=1

Nm lnNm −
l∑

m=1

Nm

2
ln
∣∣∣Σ̂m

∣∣∣
− q

2

l∑
m=1

lnNm, or (4)

BICNF(Ml) = BICN(Ml) +
1

4
r(r + 1)l ln 2

+
1

2

l∑
m=1

ln
∣∣∣Σ̂m

∣∣∣− 1

2

l∑
m=1

ln
∣∣∣D>F̂mD

∣∣∣ , (5)

where q = 1
2r(r + 3) is the estimated number of parameters

per cluster, D ∈ Rr2× 1
2 r(r+1) denotes the duplication matrix

of the covariance matrix Σ̂m [24], and F̂m , Σ̂−1m ⊗ Σ̂−1m ∈
Rr2×r2 . BICN is an asymptotic criterion, while the penalty
term of BICNF is derived for the finite sample regime.

The duplication matrix D is calculated using [24]

D> =
∑
i≥j

uijvec (Yij)
>
, (6)
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where 1 ≤ j ≤ i ≤ r and uij ∈ R 1
2 r(r+1)×1 is a unit vector

with one at its (j − 1)r + i − 1
2j(j − 1)th entry and zero

elsewhere. Yij is given by

Yij =

{
Eii, i = j

Eij +Eji, i 6= j
, (7)

where Eij contains one at its (i, j)th entry and zero elsewhere.
Once either BICN(Ml) or BICNF(Ml) is calculated for all

candidate models Ml ∈M, the number of clusters is estimated
using either

K̂BICN = argmax
l=Lmin,...,Lmax

BICN(Ml), or (8)

K̂BICNF = argmax
l=Lmin,...,Lmax

BICNF(Ml). (9)

Since the two-step cluster enumeration algorithm produces
a cluster number estimate as well as an estimate of cluster
parameters, we can provide labels to cluster centroid estimates
µ̂m, for m = 1, . . . , K̂, where K̂ corresponds to the cluster
enumeration result of either BICN or BICNF. Hence, the feature
vectors that are associated with a specific centroid will receive
the label given to that centroid. This way, we are able to
estimate the observed number of targets and, at the same time,
provide unique labels to them.

The proposed framework is outlined in Algorithm 1.

Algorithm 1 Target enumeration and labeling algorithm
Inputs: set of feature vectors S; set of candidate models
M , {MLmin

, . . . ,MLmax
}; minimum and maximum num-

ber of principal components Cmin and Cmax

Dimension reduction
for c = Cmin, . . . , Cmax do

Compute p(S|c) using Eq. (2)
end for
Estimate the correct number of principal components in S
via Eq. (3)
Create a new set of feature vectors X using Eq. (1)
Target enumeration
Calculate the duplication matrix D via Eq. (6)
for l = Lmin, . . . , Lmax do

for m = 1, . . . , l do
Estimate µm and Σm using the EM algorithm
Estimate Nm via hard clustering [9]

end for
Calculate either BICN(Ml) or BICNF(Ml) via Eq. (4) or

Eq. (5), respectively
end for
Estimate the number of clusters, K̂, in X using either
Eq. (8) or Eq. (9)
Target labeling
for m = 1, . . . , K̂ do

Assign unique labels to the feature vectors that belong
to µ̂m

end for

Fig. 1. Examples of micro-Doppler stride signatures of two individuals.

IV. EXPERIMENTAL RESULTS

A. Experimental Radar Data

Using a 24GHz radar system [25], the experimental data
were collected in an office environment at Technische Uni-
versität Darmstadt. The antenna feed point was positioned at
approximately 1.15m above the floor. Five test subjects were
asked to walk toward the radar system starting at approxi-
mately 4.5m in front of the radar, where only one person was
present in front of the radar at a time. Data were collected
at a 0◦ angle relative to the radar line-of-sight and with a
non-oblique view on the targets. The volunteers were asked
to walk slowly and without swinging their arms. In total, 65
radar measurements of 6 seconds duration are considered. The
number of measurements are equal among the test subjects,
i.e, the data set contains 13 gait samples per person.

B. Feature Extraction

The recorded radar return signals are processed to obtain
the spectrogram (see [21] for more details). In order to detect
single strides, the maxima of the envelope signal of the micro-
Doppler signatures are utilized. The part of the spectrogram
that shows a pair of strides, i.e., a full gait cycle, is extracted
and converted to a gray scale image. All images are resized
to have the same dimension, i.e., each image S ∈ Rf×t, with
f = 100 and t = 128. Examples of extracted stride pairs for
two individuals are given in Fig. 1. We reduce the dimension
of the spectrogram images using Eq. (3). Thus, a small number
of descriptive features is automatically extracted for each radar
signature. As an example, Fig. 2 shows a scatter plot of
principal component scores using three principal components.

C. Person Enumeration and Labeling

1) Scenario-1: Considering the first four persons, N = 187
stride pairs are obtained from 52 radar measurements, where
person A, B, C, and D are represented by N1 = 40, N2 =
38, N3 = 62, and N4 = 47 samples, respectively. For this
radar data, the log-likelihood function as a function of the
number of principal components is shown in Fig. 3. Here, 5
principal components are selected, such that the original set of
vectorized spectrogram images, S ⊂ R12800×187, is reduced
to X ⊂ R5×187.

For Scenario-1, we set the minimum and maximum number
of clusters in the candidate models to Lmin = 1 and Lmax =
2K, respectively, where K = 4 is the true number of targets
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Fig. 5. Estimated number of clusters as a function of the number of observed
images.

(persons) observed by the radar. Cluster enumeration and la-
beling is performed on the set of feature vectors X ⊂ R5×187.
We compare the proposed Bayesian cluster enumeration meth-
ods with the X-means algorithm [1]. BICN and BICNF have
the same data fidelity terms but different penalty terms. The
X-means algorithm implements the original BIC [7], [8] as
a wrapper around the K-means algorithm which results in a
different data fidelity and penalty terms compared to BICN and
BICNF. Note that estimating the number of clusters in X is very
challenging because X has few feature vectors which results
in even fewer feature vectors per cluster.

Fig. 4 shows the BIC computed by the different Bayesian
cluster enumeration criteria as a function of the number of
clusters specified by the candidate models. Only BICNF is
able to estimate the correct number of clusters (persons),
which corresponds to K̂BICNF = 4, while the other methods
overestimate the number of clusters to K̂BICN = 8, and
K̂X-means = 8. The asymptotic methods, BICN and X-means,
stand at a disadvantage when the number of feature vectors
is small because they are derived assuming that the number
of feature vectors N → ∞. In such cases, BICNF is more
appropriate because its penalty term is refined for the finite
sample regime.

Since BICNF is the only criterion that results in the correct
estimate of the number of clusters in X , we show the labeling
performance of the proposed method using the cluster enu-
meration result of BICNF. Table I shows the confusion matrix
generated by the proposed cluster enumeration and labeling
algorithm. The first two persons are correctly labeled 100% of
the time, while person D is often confused with the remaining
targets, but is still recognized in approximately 89% of the
cases. Overall, we achieve a high labeling rate using the
proposed Bayesian cluster enumeration and labeling algorithm.
Note that we get an average labeling rate of 95.73% without
a prior knowledge on the number of clusters (targets) and no
training data.

In order to underscore the performance of the proposed
method, we also present results obtained using the same set of
feature vectors X , but a trained classifier for discriminating the
four different persons. Using a simple nearest neighbor (NN)
classifier, we obtain the confusion matrix as shown in Table II,
where 80% of the data was used to train the classifier and the
remainder was used for testing. The presented numbers are the
average rates over 100 classifications, where training and test
data were randomly chosen. The overall accuracy is 97.19%,
where person A is correctly classified in all cases and person
D shows the lowest rate with 93.5%.

We note that, the results obtained using a trained classifier
and the proposed unsupervised cluster enumeration and label-
ing algorithm are comparable, despite the fact that 80% of the
data was available to the classifier for training. In some real
world applications, however, training data is unavailable. In
such cases, cluster enumeration and labeling algorithms, such
as the one proposed in this paper, can provide a high target
labeling rate without training data and prior knowledge on the
number of clusters.
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TABLE I
CONFUSION MATRIX (%) FOR PERSON LABELING USING THE PROPOSED

CLUSTER ENUMERATION AND LABELING ALGORITHM.

Estimated labels

A B C D
Tr

ue
la

be
ls A 100 0 0 0

B 0 100 0 0
C 0 6.45 93.55 0
D 2.13 6.38 2.13 89.36

TABLE II
CONFUSION MATRIX (%) FOR PERSON RECOGNITION USING AN NN

CLASSIFIER.

Estimated labels

A B C D

Tr
ue

la
be

ls A 100 0 0 0
B 0 97.25 2.75 0
C 0 1.33 98 0.62
D 0.3 0.1 6.1 93.50

2) Scenario-2: In this scenario, we consider a different
measurement setup. First, we observe person A and collect
N1 = 40 images. Next, we do the same for person B,
where N2 = 38. Every time a new person is observed, in
total, N =

∑K
k=1Nk, where K is the number of persons

already observed. We do this for five persons in a sequential
manner, resulting in N = 252 images. When ever a set of
images is available, we re-estimate the total number of targets
observed by the radar so far. For this, the number of principal
components is also re-estimated based on the current set of
feature vectors. We set Lmin = 1 and Lmax = 10.

Fig. 5 shows the number of estimated clusters K̂ as a
function of the number of observed images n, where n =
1, . . . , N . Due to the setup described above, the true number
of clusters forms a staircase. Among the compared Bayesian
cluster enumeration criteria BICNF is the only criterion that is
able to correctly estimate the number of persons and track
the change in the number of persons as we observe more
images. Due to the small number of available features, BICN

rarely correctly estimates the number of persons even though it
responds to the change in the number of observed persons. The
X-means algorithm is able to correctly estimate the number
of persons in the beginning but quickly overestimates K and
chooses the specified maximum number of clusters as we
observe more images.

V. CONCLUSION

We propose a target enumeration and labeling algorithm to
estimate the number of persons and label them by monitor-
ing their gait using radar. It outperforms an existing cluster
enumeration method in terms of the correct estimation of the
number of clusters (persons). Despite short observation times,
the persons are labeled with a high accuracy in the absence
of training data and knowledge on the number of persons.
In the future, we will test the performance of our algorithm
by increasing the number of targets, considering more gait
classes, and extending the measurement duration.
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