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Abstract—In this paper, we introduce a novel minutiae-based
matching algorithm for fingerprint recognition. The method is
built on an elegant and straightforward mathematical formu-
lation: the minutiae set is represented by a train of complex
pulses and the matching algorithm is based on a simple cross-
correlation. We propose two different implementations. The first
one exploits the intrinsic sparsity of the signal representing the
minutiae set in order to construct an efficient implementation.
The other relies on the Fourier transform to build a fixed-length
representation, being thus suitable to be used in many biomet-
ric crypto-systems. The proposed method exhibits performance
comparable with NIST’s Bozorth3, that is a standard de facto for
minutiae matching, but it shows to be more robust with cropped
fingerprints.

I. INTRODUCTION

Fingerprints are the most-used biometric traits thanks to
their usability, low-cost, and accuracy. The minutiae-based
techniques [1] are nowadays the consolidated matching meth-
ods, due to their high performance and low computational
memory requirements. Nevertheless, they still show some
weaknesses: mainly, the variability of the length of the rep-
resentation and the drop of recognition rate in the cropped
images scenario, due for example to the small size of the
acquisition sensors of mobile devices.

The variability of the length of the representation makes the
system incompatible with the majority of biometric crypto-
system methods [2]-[4]. There is indeed a big effort from
the community to find novel fixed-length representations of
fingerprints [5], [6]. The problem with these representations is
that they incur a significant drop in recognition accuracy. Some
attempts to build fixed-length representations directly from
minutiae have been proposed, such as the spectral minutia
representation [5] or minutia cylinder-code (MCC) [7]. The
MCC method is not truly a fixed-length representation since
some of its cells may be invalid, and the amount of invalid
cells is unpredictable. The Spectral Minutia Representation
suffers from poor recognition rates. This is mainly due to
their minutiae representation that, with the aim of achieving
translation invariance, gets rid of a large amount of useful
information. This aspect will be extensively discussed in
Section II-A.

Regarding the drop of performance when dealing with partial
fingerprint images, usually, additional features are taken from
the fingerprint image [8]-[10]. These techniques are more
computationally expensive because they usually apply cross-
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correlation or similar operations directly to the fingerprint
images. Furthermore, the use of additional features to ISO/IEC
19794 standard minutiae goes against interoperability.

In this work, we take inspiration from the fundamentals at
the basis of the spectral minutia representation approach [5]
to arrange minutiae sets in such a way they can be treated
with signal processing techniques. In more details, minutiae
are represented by a sparse complex signal and the matching
is based on a simple cross-correlation. Since no hard decision
is taken on corresponding minutia couples, the system is
more robust to the missing-minutiae scenario. The sparsity of
the signal makes the cross-correlation computation very fast.
Furthermore, all operations can be implemented also in the
frequency domain by means of a fixed-length representation.
In Section II-A, we will give some remarks on the represen-
tation proposed in [5] and discuss its limitation. In Section
II-B we will show how to exploit the sparsity of the minutiae
signal representation to design a very elegant, accurate and
fast matching algorithm based on spatial-domain analytical
cross-correlation. In Section II-C, a spectral representation of
the same algorithm will be shown. Eventually, experimental
results will be shown in Section III.

II. COMPLEX DOMAIN MINUTIA REPRESENTATION

Let M =m; : {z;,y;, ;i = 1,..., N} be an unordered set
of minutiae where x and y are the Cartesian coordinates and «
is the orientation of the minutia. As suggested in [S], [11], [12],
each minutia m; can be represented as an isotropic Gaussian
function centred in (z;,y;) whose amplitude is modulated by
e'“. Therefore, a minutiae set can be represented as a mixture
of Gaussian functions:
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where d(-,-) represents the Dirac distribution and * the
convolution operator. The o parameter is meant to absorb the
variability of the relative location of minutiae due to potential
fingerprint distortion. This formulation has been shown to be
very useful to generate a fixed-length representation in the
spectral domain [5], [11], [12].
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(a) Original Signal (b) Reconstruction with
phase only spectrum
information

Fig. 1. Real part of the Minutiae complex representation Ze { M (x,y)}

A. Some Remarks on the Spectral Minutiae Representation

In [5], [11], [12], the authors use as a template the ab-
solute value of spectral representation of the minutiae set
| # (wg,wy)|, discarding the phase information, thus making
the template invariant to spatial translation.

M (wz, wy) = //M(:c,y)e_‘(‘“’”““yy)dmdy:
2
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However, it is well known that the phase removal induces
significant loss of information that is useful for the recognition
process. As an example, in Figure 1 the original representa-
tion M (x,y) and the one reconstructed when discarding the
magnitude of the spectral representation (3) are shown.

7! {e‘@iwiff_//ﬂwwy) } 3)
| A (we, wy)|
By looking the figure, it is clear that the phase data alone
contain almost all the information.
Furthermore, let’s take into account two minutiae sets M (a)
and M®), Let’s suppose

®) (a)_

1:1(»“): ;Y yl(b), ol =¥ + Vi 4)

% i
i.e. the locations of the minutiae are all the same while the
orientations differ by 7. Even if any minutiae matcher would

mismatch this these two sets, according to [11], they would
have the same template. It is well known in fact that:

| (e wy)|* = F{M (2,y) © M(z,y)} (5)

being ® the cross-correlation operator. Since the cross-
correlation depends only on the relative phase difference
between signals, it is clear that both M (@) and M® have
equal autocorrelation.

B. Sparse Cross-correlation in the Continuous Spatial Do-
main

In this section we show how to use the complex minutiae
representation (1) to design a matcher working directly in the
spatial domain. Given a pair of minutiae sets M (*) and M®),
their cross-correlation is defined as:
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Clo(z,y) = M@ (z,y) @ MO (z,y) =
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Actually, ridge endings and bifurcations need to be treated
separately. Therefore, we divide the minutiae set into disjoint
subsets Mcnq and My ¢, compute the cross-correlation be-
tween homologous sets and sum them:

a,b a,b a,b
Cioi” (@,9) = Clnd (@,9) + Cyi(@yy). ()

The similarity score is given by the maximum value of the
real part of the suitably normalised cross-correlation:

2
S (M(“),M(b)> = _Smo” max (%e {Ct(gt’b)(m,y)})
Ny + Ny =y
(10
where Ze{-} represents the real value. The normalisation
value is chosen so that the matching score between identical
minutiae sets is approximately 1 (it is exactly 1 when o — 0).
It is worth mentioning that no hard decision is made on
the correspondence between a minutia pair, and the strength
of each minutia similarity is kept for the final decision. As
we will see in Section III, this makes the method robust to
missing-minutiae scenario.
The computation of (8) is straightforward since we just need
to compute all the possible differences between minutiae:

) 7 ) 7
li=1,..N%j=1,..N°

Clab) — { (x(-a)— 2 yl(a)— y§b)’ o~ a(b))} an

It is worth pointing out that this step is identical to what
the majority of minutiae-based fingerprint matcher does. We
will refer to (11) as minutiae set cross-correlation.

On the other hand, the full computation of the evenly sam-
pled version of (6) would be quite computationally expensive
since the evaluation of each point of the cross-correlation func-
tion underlines the computation of N, ;- N2, + Ng: - Np
steps. Nevertheless, because of the sparsity of C(®%)(x, y),
and since we are interested only in estimating its maximum
value, we can evaluate the values of C'(“%)(z,7) just in the
set correlation points defined in (11), i.e.:

CD(z,y) = 5" (@, y)  1o(x,y)

12)
(a.b) )
c=clucy
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Fig. 2. Continuous spatial cross-correlation between complex minutiae
avb)(oc7 y) and sampled version C/(20) (z,y).

where 1¢(z,y) is the Indicator function:

14(z,y) = {1 if (z.y) € 4 (13)

0 otherwise.

It is sufficient to calculate the value of the cross-correlation
in those points since the sought maximum is located next
to highest aggregation of points from the C' set. In other
words, the spatial resolution of the sampled cross-correlation
C(@b)(z,y) grows with the value of C(*?)(z,y). An example
of this behaviour can be seen in Figure 2. The number of stegs
to compute C(4%) (., ) is thus [Neand “Nb .+ Ngig - NfifL .
The number of values to compute can be further decreased by
discarding the points too far from the origin. In summary, the
sparsity of the signal representing the minutiae set (1) makes
the complexity of the algorithm be O (N*) and independent
to the resolution of z and y axis. Note that the computational
complexity is the same of NIST’s Bozorth3 [13].

The described algorithm does not take into account rotations
of the minutiae sets. It is then required to explicitly apply a set
of rotations to one of the minutiae sets and find the optimal

one.
x§b) cos¢ —sing xgb)
® ]\ sing coso (®)
Y; Y; (14)

b b
oz§ ) oz; ) 0]
The maximization algorithm we used is based on golden
section search and parabolic interpolation [14].
C. Frequency Fixed-Length Implementation

All the steps described in the previous section can
be also implemented in frequency domain #(w,,w,) =
F{M (z,y)} where cross-correlation is given by:

%“’b(wm,wy) = //“(wx,wy)///b(wmwy)*. (15)

As we did before for the spatial implementation, we separate
cross-correlation between homologous minutiae, i.e. ridge
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endings and bifurcation:

(16)

end

a,b a,b a,b
GCrot (Wa, wy) = Cop g(Way wy) + Chif (wa, wy)-

In order to find the matching score we should sample %&b,
compute the Discrete Fourier Transform (DFT) and take the
maximum value.
2 maz (% {IFFTQ [g‘zj n, m]} })
| <. e[n,m] > |2+ | <.A’n,m]> |?
a7
Since multiplications in the DFT domain correspond to a
circular convolution in the spatial domain, in order to avoid
aliasing effects, the sample rate in the frequency domain in w,
(wy) direction should be chosen to be greater or equal to 22m
where L is the number of pixels in the x (y) direction. The
maximum frequency to sample depends on the chosen o value

2, 2\02
wptwy) o

S (M(a>7 M(b)) —

since it depends on which values (w,,w,) make e~
go close to zero. However, this implementation does not
exploit the sparsity of the original signal in the spatial domain,
since each minutia pulse is spread on the whole frequency
domain, thus increasing the computational complexity. For
this reason, various samples reduction techniques have been
proposed [11]. Nevertheless, in this work, we have not dealt
with this issue. Even though the spatial implementation is
more computationally efficient, the frequency implementation
exploits a fixed-length representation, that is a mandatory
property for many biometric crypto-systems methods [2], [4].

III. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

The proposed algorithms have been evaluated on the MCYT
[15] database. Only fingers acquired with optical devices have
been taken into account. We have used both left- and right-
hand index and middle fingers from 100 users (0000 to 0099
IDs). Each finger has 12 realizations, 6 of which have been
used for enrolment, 6 for verification. During the tests, only
homologous fingers have been compared each other. Minutiae
have been extracted through NIST’s MINDTCT [13].

A remarkable characteristic of our method is that it has very
few parameters to be defined: the o parameter, the research
window of optimal rotation, and the maximum number of ro-

tations to try. The research window has been set to (—1”—27 ll)
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Fig. 4. ROC Curve

while the maximum number of rotations has been set to 10
for computational reasons. Regarding o, in Figure 3 the equal
error rate (EER) for different values of o is shown. Since
o= % shows the best performances, the following tests use
this parameter.

In Figure 4, the ROC curves of both implementations of
our method, the spectral minutiae method [11] and NIST’s
BOZORTH3 [13] are compared. While [11] method perfor-
mance are very low for reasons explained in Section II-A, our
method’s performance are slightly below NIST’s ones. Both
our implementations show roughly the same performance.
That is because they basically compute the same scores with
different procedures. For this reason, in the following tests,
only the spatial implementation will be evaluated since it
is the fastest. In Figure 5, the scatter plot of the scores
obtained from the comparison of corresponding minutiae is

0.6 [~

Spatial Implementeation

0.2 [~

Scores -

0= : ! | =
0.2 0.4 0.6

Scores - Spectrum Implementeation

Fig. 5. Scatter plot of the scores computed through spatial and spectral
implementations
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Fig. 6. ROC Curve in the case of missing-minutiae

shown. We can notice that, even though the scores are well
correlated, the spatial domain implementation gives slightly
higher scores. That is probably because the spatial domain
implementation is more accurate in estimating the maximum
cross-correlation value (10) due to the sampling effects in the
FFT implementation.

Our approach has shown to be particularly robust when some
minutiae are missing, such as in the case of small size acqui-
sition device. We have simulated the aforementioned scenario
by cropping the fingerprint images so that the minutiae are
discarded. We took into account two different cases: p = 25%
and p = 50% missing-minutiae. In order to remove p% of
the minutiae, we randomly discarded minutiae falling below
percentile p of = or y position, or above (100 — p)%. We
considered the scenario in which only the genuine probes
have cropped images, while the enrolled fingers and the
attacker probes have not been cropped. As a matter of fact,
in a realistic scenario, both enrolment and attack processes
are more accurate than everyday genuine users’ identification
attempts. As it can be seen in Figure 6, in the 25% missing-
minutiae scenario, our method and the NIST’s one show
roughly the same performance, while our approach works
remarkably better than Bozorth3 in the 50% missing-minutiae
scenario. The robustness of our method is probably due to the
fact that, contrary to Bozorth3, no hard decision is taken on
the correspondence between single minutiae pairs. Therefore,
even if few minutiae are available, if they are strongly similar
to a subset of the reference fingerprint, the matching decision
is correctly taken.

IV. CONCLUSION

In this paper, we have introduced a novel minutiae-based
matching algorithm for fingerprint recognition built on an
elegant and straightforward mathematical formulation. The
method has shown to be more robust with cropped fingerprints
compared with NIST’s Bozorth3 method. We proposed two
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different implementations. The first one is very computation-
ally efficient while the second one makes use of a fixed length
representation. We think that the simple mathematical closed
form of the algorithm can be a solid starting point to develop
further methods. For example, the spatial implementation may
be integrated with fuzzy vault techniques, while the frequency
implementation with fixed-length helper data schemes. The
current drawback of our frequency representation is that it is
not invariant to spatial translations and rotations that let the
arrangement of a helper data scheme to be not straightforward.
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