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Laboratory of Signal Processing

Tampere University of Technology
Tampere, Finland

Email: mehmet.yamac@tut.fi

Bülent Sankur
Electrical and Electronics

Engineering
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Abstract—We consider the problem of linear data hiding
or watermark embedding directly onto compressively sensed
measurements (CSMs). In our encoding and decoding scheme, we
seek exact recovery of concealed data and a small reconstruction
error for a sparse signal under the additive noise model. We
propose an efficient Alternating Direction of Methods of Multi-
plier (ADMM) based decoding algorithm and we show through
experimental results that proposed decoding scheme is more
robust against additive noise compared to competing algorithms
in the literature.

Index Terms—Compressive Sensing, Data Hiding, Watermark-
ing, Image Encryption, Privacy Preserving

I. INTRODUCTION

Compressive sensing [1] (CS) theory has emerged as a
remedy for applications where data acquisition is costly, e.g.,
expensive sensor are required or when the resulting sampled
data volume is impractically large. CS theory states a signal
can be represented with far fewer samples compared to the
Nyquist rate if in a proper domain it is sparse or at least com-
pressible. There are already success stories of CS such in MRI
imaging [2] where as a consequence the signal acquisition
time has been significantly reduced, or in a health monitoring
system where compressive sampling of streaming ECG signals
increases the battery life span [3]. In addition, single-pixel
cameras have been developed [4] using compressive image
sensing for mobile phones [5].

Data hiding and watermarking technologies have witnessed
tremendous developments in the last two decades, becoming
thus a mainstream technology. A good illustrative case is a
health monitoring system where patient biomedical data is
transmitted to a health center. In this case, data hiding and
watermarking enable [6] embedding of meta-data such as
Electronic Health Records or patient’s identity for identifica-
tion and authentication purposes. The overwhelming majority
of these attempts, however, use embedding medium signals
sampled according to the Nyquist-Shannon theorem and can
not be applied to CS acquisition systems such as [2], [3], [4],
[5].

Although CS is conceived as a data acquisition method, a
CS framework is also capable of inherently providing con-
fidentiality with a reasonable level of security. Furthermore,

this capability comes at practically no additional cost and
data encryption [7] can be added right into the sampling
process. Compressive sensing enables encryption via random
or pseudo-random sampling matrices.

There have been few attempts in the literature [8] to embed
metadata directly onto a compressively sensed signal. The
benefits of data hiding in compressively sampled signals are
as follows: First, the compressive samples can be used as a
carrier for subliminal information, and such a scheme can
perform data hiding at a low cost by implementing linear
encoding and spreading the hidden message directly during
sensing. Second, encryption is enabled for the sensed samples
and the additional embedding makes it harder for malicious
user to hack the signals. In this case, the hacker must obtain
both the encryption matrix (i.e., sensing matrix), and the data
hiding or encoding matrix.

In this work, we propose a new decoding strategy for the
data embedding in which the meta data is spread directly
onto CSMs (compressively sensed measurements). This new
method builds upon our previous method for data hiding in
CSMs [8]. The novelty of the work is that it addresses the
extraction of the watermark/hidden data and recovery of the
carrier message as a sparse signal reconstruction problem. To
this effect, we use proximal calculus and ADMM: Alternating
Direction Method of Multipliers based decoding method. We
show that this novel signal recovery and hidden data extraction
method is more robust to additive noise, Gaussian or non-
Gaussian, compared to the scheme in [8].

The rest of the paper is organized as follows. Section
II provides the notation and the mathematical preliminaries.
In Section III, we briefly review the CS framework. Then,
in Section IV, we explain the proposed scheme and give
the details of the ADMM-based decoding algorithm. Finally,
the performance of the proposed algorithm is analyzed and
conclusions are drawn.
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II. PRELIMINARIES

We define the `p norm of any vector x ∈ RN as ‖x‖`Np =(∑N
i=1 |xi|

p
)1/p

for p ≥ 1. The `0-norm of the vector x ∈
RN is given as ‖x‖`N0 = limp→0

∑N
i=1 |xi|

p
= #{j : xj 6=

0}. The indicator function, ic : RN → {0,∞}, of a convex
set C is also defined as

iC(x) =

{
0 if x ∈ C
∞ if x 6∈ C.

A signal S is said to be strictly k-sparse if the number
of non-zero coefficients is less than a constant k when we
represent this signal in a proper basis (or dictionary), Φ, i.e.,

‖x‖`N0 ≤ k, (1)

where S = Φx ∈ RN . Indeed, most signals we encounter
in real-world applications exhibit a power law decay in
some apropriate Φ. Consider the coefficients of x sorted in
descending order in magnitude, i.e.,

∣∣x1
∣∣ ≥ ∣∣x2

∣∣ ≥ ... ≥∣∣xN−1
∣∣ ≥ ∣∣xN ∣∣, where xi is the i.th largest coefficient of

x (in magnitude). Let ∧(k) be the set of indices corresponding
to the k largest coefficients. Then, the signal of interest S is
said to be approximately k-sparse if

‖S − Φx∧(k)‖N`2 ≤ κ, (2)

where κ is a small constant.
The Restricted Isometry Constant (RIC) of order k of a

m×N matrix A is defined as the smallest constant, δk(A) ∈
(0, 1) satisfying

(1− δk(A)) ‖x‖`N2 ≤ ‖Ax‖`m2 ≤ (1 + δk(A)) ‖x‖`N2 (3)

for all k-sparse x ∈ RN .
Since we use in this work an ADMM-based decoding

scheme, a brief reminder on proximal method is in order.
ADMM [9] is a special type of a proximal algorithm [10].
Proximal operator or proximal mapping [11] of a function f
at a point z with a parameter γ > 0 is defined as

proxγf (z) = arg min
u
{f(u) +

1

2γ
‖u− z‖2`N2 }. (4)

A proximal operator can be considered as a gradient descent
step for the smooth approximation of f . This method proves
to be very useful in optimization problems involving non-
differentiable functions. It can be interpreted as a generaliza-
tion of the projection operator [12]. For instance, when f is
the indicator function, iC , the proximal operator will simply
be the projection operation onto C, i.e.,

Πc(z) = arg min
x∈C
‖x− z‖`N2 .

III. COMPRESSIVE SENSING REVIEW

In compressive sensing we have m measurements of an N -
dimensional signal S ∈ RN, i.e.,

y = ΨS, (5)

where Ψ is the m × N (typically, m << N ) linear mea-
surement matrix. Assuming that this signal is compressible
(approximately k-sparse) in a proper sparsifying basis Φ, we
can re-arrange the equation as

y = ΨS = ΨΦx∧(k) + ΨΦxΛc = Ax∧(k) + n0, (6)

where ΨΦ and the complement of set ∧(k), defined as
Λc = {1, 2, 3, ..., N} \ ∧(k), represents the indices of the
non-compressible small magnitude part of x, and n0 is the
corresponding additive distortion due to the discarded mea-
surements (it vanishes in strictly sparse case). In addition
CSMs can be corrupted by channel errors during transmission,
also modeled as additive noise, or by quantization errors. Then,
the reconstruction algorithm must handle

y = Ax+ n, (7)

where n is a general additive noise and x is a sparse signal
(hereafter, we use the notation of x instead of x∧(k) for
convenience). Even in the noise-free case when n vanishes,
Equation (7) is an underdetermined system of linear equations
and has infinitely many solutions. In this case, one may find
the sparsest solution from infinitely many by solving

x̂ = arg min
x
‖x‖`N0 + i{Ax=y}(x). (8)

The problem formulated in (8) is not convex, and hence one
can relax and convexify it so that, e.g., the well-known Basis
Pursuit problem can be applied:

x̂ = arg min
x
‖x‖`N1 + i{Ax=y}(x). (9)

It is proven that the solution of (9) is unique given that A
has certain properties (e.g., null space property) [13].

In the noisy case, (9) can be expressed in terms of the
following Basis Pursuit Denoising problem [14],

x̂ = arg min
x
‖x‖`N0 s.t ‖y −Ax‖`m2 ≤ ε (10)

The stability of the solution of (10) is well studied in the
literature. For instance, given that ‖n‖`2 ≤ ε, if matrix A

possesses RIC with δ2k <
√

2−1, equation (10) approximates
x with

‖x− x̂‖`N2 ≤ C0ε, (11)

where C0 depends on δ2k(A) [15]. As an example of the
measurement matrix, A with i.i.d. elements Ai,j drawn ac-
cording to N

(
0, 1

m

)
, m > k(log(N/k)) guarantees with

high probability exact signal reconstruction when the noise
n vanishes [15].
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IV. DATA HIDING

Let x ∈ RN be a k-sparse signal and w ∈ {a,−a}M be
an M -length binary hidden message (e.g., watermark) that
we wish to linearly embed into CSMs of S. Recall that
compressive sensing algorithms relocate the computational
burden from the sampling side (e.g., transmitting end) to
the reconstruction side (receiving end) by performing linear
sampling and non-linear reconstruction. On the other hand, the
M -long binary hidden message can be linearly spread directly
onto CSMs via the encoding matrix B ∈ Rm×M ,M < m, re-
sulting in the marked signal y = Ax+Bw, where A ∈ Rm×N
is the measurement matrix.

Finally, the marked signal carrying the hidden data can be
modified by an additive noise or as a consequence of some
attack, yielding:

y = Ax+Bw + n. (12)

A. Previous Decoding Scheme

In [8], the authors proposed a joint reconstruction and re-
covery algorithm as in Algorithm 1. Here F ∈ Rp×m is the left
annihilator matrix of B, i.e., FB = 0 with p = m−M . Briefly
in this iterative method, we first try to remove the watermark
via the annihilator matrix F , reconstruct the original signal x
sparsely, deflate accordingly the received signal y, and then
proceed to extract the binary watermark w via thresholding.

Algorithm 1 Algorithm 1 in [8]

Input: y, A, B;
Determine: ε
1. Apply F to y : ỹ = Fy
2. Estimate x̃ : x̃ = arg minx ‖x‖`N1 s.t. ‖ỹ − FAx‖`p2 ≤
ε
3. Estimate w̃ : w̃ = (BTB)−1BT(y −Ax̃)
4. Threshold w̃ : ŵi = a ∗ sgn(w̃i)
5. x̂ = arg minx ‖x‖`N1 s.t. ‖(y −Bŵ)−Ax‖`m2 ≤ ε
Return: x̂, ŵ

It is stated in [8] that the data embedding capacity depends
on the restricted isometry constant of FA and the signal to
noise ratio (SNR).

B. Proposed Robust Decoding Scheme

1) Problem Formulation: In this work, we formulate the
joint estimation of embedded data and sparse signal recovery
as an optimization problem:

(x∗, w∗) = arg min
(x,w)
{λ1

2
‖y − (Ax+Bw)‖2`m2 + λ3 ‖x‖`N1

+
λ2

2
‖Fy − FAx‖2`p2 + i{−a,+a}M (w)}. (13)

In (13), a second fidelity term, ‖Fy − FAx‖2`p2 is added to
increase the solution stability, as it was done in Algorithm
1 along with the first term ‖y − (Ax+Bw)‖2`m2 . While the
second term increases the stability, the first term is instru-
mental for the ADMM formulation, and this can be seen

as a feed-back mechanism. Finally, the last term represents
the projection on a non-convex set and corresponds to the
thresholding operation to extract the hidden binary message.
The optimization problem (13) becomes a non-convex one
due to last term, since wi is an integer. We can solve this
problem using the following ADMM strategy. In the following
subsection, we first explain the primal-dual conversion of (13)
and then proceed with the ADMM solution for (13).

2) From dual ascent to ADMM: The equivalent consensus
form can be written as

(x∗, w∗, z∗1 , z
∗
2) = arg min

(x,w,z1,z2)
{λ1

2
‖y − (Ax+Bw)‖2`m2

+ λ3 ‖z2‖`N1 +
λ2

2
‖Fy − FAx‖2`p2 + i{−a,+a}M (z1)}

subject to w = z1, x = z2. (14)

The Augmented Lagrangian form for this problem in (14) can
be cast as

L(µ1,µ2)(β1, β2, x, w, z1, z2) =
λ1

2
‖y − (Ax+Bw)‖2`m2

+ λ3 ‖z2‖`N1 +
λ2

2
‖Fy − FAx‖2`p2 + i{−a,+a}M (z1)

+ 〈β1, (z1 − w)〉+ 〈β2, (z2 − x)〉+
µ1

2
‖w − z1‖2`M2

+
µ2

2
‖x− z2‖2`N2 , (15)

where β1 ∈ RM , β2 ∈ RN are called Lagrange multipliers or
dual variables, and the last two terms are penalty terms with
parameters, µ1, µ2 > 0, respectively. The corresponding dual
function can be written as

g(µ1,µ2)(β1, β2) = inf
(x,w,z1,z2)

L(µ1,µ2)(β1, β2, x, w, z1, z2). (16)

Instead of the primal problem in (13), we can approximate the
optima of the primal function (with some duality gap due to
the non-convex term) by maximizing the dual function which
is

(β∗1 , β
∗
2) = arg max

β1,β2

{
g(µ1,µ2)(β1, β2)

}
. (17)

Then, we can approximate the primal optimal points by
solving following problem:

(x∗, w∗, z∗1 , z
∗
2) = arg min

(x,w,z1,z2)
L(µ1,µ2)(β

∗
1 , β
∗
2 , x, w, z1, z2).

(18)
In maximizing Problem (17), the primal values are updated
jointly. This is called augmented Lagrangian method or
method of multipliers [16], which has the following iterative
form for our problem,

(x,w, z1, z2)
k+1 ← arg min

(x,w,z1,z2)
L(µ1,µ2)(β

k
1 , β

k
2 , .., z1, z2)

βk+1
1 ← βk1 + µ1(zk+1

1 − wk+1)

βk+1
2 ← βk2 + µ2(zk+1

2 − xk+1),

where the last two terms come from the gradient ascent step
for the dual function and the specific choice of the ascent step

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1776



µ1, µ2 (these dual variable updates can be done independently
since ∇(β1,β2)g(µ1,µ2)(β1, β2) are separable in β1 and β2).

The joint optimization stated in Eq. (18) can be solved
conveniently for the x,w, z1, z2 variables using ADMM [17]
(see the recent review [9] for details.) We can derive an
algorithm in which the primal and dual variables are updated
independently in an alternating manner. The general structure
of ADMM algorithm for Problem (13) is given in Algorithm
2.

3) Primal Variable Updates: Let us start from the update
of z2,

zk+1
2 = arg min

z2
{λ2 ‖z2‖`N1 +

〈
βk2 , (z2 − xk+1)

〉
+
µ2

2

∥∥xk+1 − z2

∥∥2

`N2
} (19)

which is actually equivalent to

zk+1
2 =arg min

z2

{
λ2 ‖z2‖`N1 +

µ2

2

∥∥∥∥z2 −
(
xk+1 − βk2

µ2

)∥∥∥∥2

`N2

}
.

(20)
By the definition in (4), one can easily see that it is nothing
but the the proximity operator of f(x) = ‖x‖`N1 with the
parameter (λ2

µ2
)

zk+1
2 = prox

(
λ2
µ2 )`N1

(
xk+1 − βk2

µ2

)
. (21)

Using the separable sum property for proximal maps [11],
one can obtain the proximal operator of f(x) = ‖x‖`N1 with
parameter γ at vector z as follows,

proxγf (zi) =


zi + γ if zi ≤ −γ

0 if −γ ≤ zi ≤ +γ

zi − γ if zi ≥ γ

where zi is the i-th element of the vector z. This operation
is actually the well-known soft thresholding. Similarly, the z1

update can be performed by solving

zk+1
1 = arg min

z1

{
iC (z1) +

µ1

2

∥∥∥∥z1 −
(
wk+1 − βk1

µ1

)∥∥∥∥2

`M2

}
(22)

Algorithm 2 ADMM for Problem
repeat

Primal Updates
xk+1 ← arg minx L(µ1,µ2)(β

k
1 , β

k
2 , x, w

k, zk1 , z
k
2 )

wk+1 ← arg minx L(µ1,µ2)(β
k
1 , β

k
2 , x

k+1, w, zk1 , z
k
2 )

zk+1
1 ← arg minx L(µ1,µ2)(β

k
1 , β

k
2 , x

k+1, wk+1, z1, z
k
2 )

zk+1
2 ← arg minx L(µ1,µ2)(β

k
1 , β

k
2 , x

k+1, wk+1, zk+1
1 , z2)

Dual Updates:
βk+1

1 ← βk1 + µ1(zk+1
1 − wk+1)

βk+1
2 ← βk2 + µ2(zk+1

2 − xk+1)
until Convergence
return x̂, ŵ

and we can easily see that it is the following operator

zk+1
1 = proj{{−a,+a}M}

(
wk+1 − βk1

µ1

)
(23)

where we can approximate the projection onto the set C =
{−a,+a}M as the simple thresholding operator

proj{{−a,+a}M} (zi) ≈ a ∗ sgn (zi) (24)

for the i-th element of a vector z. We can see that the operation
is a relax-and-round heuristic for integer valued non-convex
optimization problem (22) by relaxing the set {−a,+a} to
(−a,+a), solving the corresponding convex problem and
rounding the solution to the nearest integer −a or a [18].

Update of the primal variable x can be done by solving

xk+1 = arg min
x
{λ1

2

∥∥y − (Ax+Bwk)
∥∥2

`m2
+
〈
β2, (x− zk2 )

〉
+
λ2

2
‖Fy − FAx‖2`p2 +

µ2

2

∥∥x− zk2∥∥2

`N2
}. (25)

Since the right hand side is differentiable, the update equa-
tion can be cast as solving the linear equation ∇xL(.) = 0,
which reduces to

xk+1 = (λ1A
TA+ λ2A

TFTFA+ Iµ2)−1

(λ1A
T (y −Bwk) + λ2(ATFTFy) + βk2 + µ2z

k
2 ) (26)

Similarly, the update of primal variable w can be achieved by
solving

wk+1 = (arg min
w

λ1

2

∥∥y − (Axk+1 +Bw)
∥∥2

`m2

+
〈
βk1 , (z

k
1 − w)

〉
+
µ1

2

∥∥w − zk1∥∥2

`M2
) (27)

which yields

wk+1 = (λ1B
TB + µ1I)−1[

λ1B
T (y −Axk+1) + βk1 + µ1z

k
1

]
(28)

by solving ∇wL(.) = 0. In addition to these variables,
robustness parameters (µ1, µ2) can also be updated,

(µk+1
1 , µk+1

2 )←
(
ρ1µ

k
1 , ρ2µ

k
2

)
. (29)

V. SIMULATION RESULTS

We generate a k = m
5 -sparse N = 512 length synthetic

signal. A and F are chosen as explained in Section IV. The

M -long watermark, w, is generated with ‖w‖`M2 =
‖Ax‖`m2

4
so that the embedded-data-to document ratio is −6 dB and
the marked measurements are contaminated with AWGN with
different signal-to-noise ratios (SNR). We define the SNR as

20 log10

(
‖Ax+Bw‖`m2
‖n‖`m2

)
. Each experiment is conducted 250

times and the average performance results are reported. Similar
experiments are also conducted with different sparsity level
and SNR, but for the sake of brevity we report only the cases
for 32 dB and 24 dB in Figure 1 and Figure 2, respectively.
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Fig. 1: Heat-maps of exact watermark error probability, Prob(w 6= ŵ) over measurement rate m/N and embedding rate M/m
under AWGN at 32 db SNR. (a) Algorithm 1. (b) The proposed method without the term ‖Fy − FAx‖2`p2 . (c) The proposed
method.

Fig. 2: Heat-maps of Prob(w 6= ŵ) over m/N and M/m under AWGN at 24 dB SNR. (a) Algorithm 1. (b) The proposed
method without the term ‖Fy − FAx‖2`p2 . (c) The proposed method.

Similar performance was observed in the experiments not re-
ported here. We compare the performance results of Algorithm
1, the proposed Algorithm with and without the data fidelity
term ‖Fy − FAx‖2`p2 for different embedding rates, M

m and
the different measurement rates m

N . From Figure 1-(b), (c)
and Figure 2-(b), (c), it can be clearly seen that modeling
the problem as joint optimization problem in (13) which
includes an extra data fidelity term ‖Fy − FAx‖2`p2 , which
is in dimensionality reduced measurement domain clearly
surpasses the performance of modeling without it. It is also
apparent from the Figure 1-(a), (c) and Figure 2-(a), (c) that the
performance of final ADMM based solution to (13) exceeds
the previous state of art [8].

In our experiments we set λ1 = λ2 = 1, λ3 = 1 × 10−2,
µ1 = 3.3× 10−6, µ2 = 8× 10−3, ρ1 = 1, ρ2 = 1.035.
`1-magic [19] solver (it was observed that different solvers,

such as CVX, resulted in a similar performance) is used to
conduct Algorithm Algorithm 1 with ε ≈

√
mσ2

n.

VI. CONCLUSION

In this work we have proposed a new iterative decoding
strategy for joint watermark extraction and signal recovery
in compressively sampled signals. The new approach boosts
the watermark capacity of the compressively sampled signals
and improves also its noise robustness. We plan to extend
this framework to embed meta-data onto CSMs to structurally
sparse signals such as group sparse ones.
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