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Abstract—Functional neuroimaging enables the assessment of
the brain function in both rest and active conditions. While
traditional functional connectivity studies focus on determining
distributed patterns of brain activity, the analysis of pair-wise
correlations in the time series associated to brain regions allows
a paradigm shift to graph theory making available a whole set
of parameters for the analysis of the functional network. Then,
the study of the properties of the networks as well as of their
modulations can be performed in the space of the so-identified
features potentially leading to the detection of condition-specific
(static or dynamic) fingerprints. Following this guideline, this
study is a first attempt to using graph-based measures for
capturing task-specific signatures of a reach&grasp movement.
The weighted clustering coefficient (CW), characteristic path
length (SW) and small-worldness (SW) were considered and
performance was assessed against classical measures (event-
related (de)synchronization). Neurophysiological data were col-
lected through high-density EEG and a stereophotogrammetric
system was used for capturing the onset and end of the movement.
Though not reaching statistical significance, these preliminary
results witness the modulation of the function network due to
reach&grasp and provide evidence in favour of the possibility
of capturing such a modulation through graph-based properties.
This would allow to shed light on the movement-induced reorga-
nization of the network, which has a clear translational impact
for the assessment of the recovery of patients after acute stroke.

Index Terms—High-density EEG, Brain connectivity, Motor
function, Graph theory

I. INTRODUCTION

The mechanisms that the central nervous system employs
to control the movement performed with the upper limbs are
still matter of research [1], [2]. The present work proposes a
neurophysiological approach to decode the electrical activity
during the reaching and grasping movements [3] compared to a
resting state condition. Some evidence demonstrate that finger
tasks modulate cortical desynchronization mainly in « and 3
frequency bands [4], [5] and that flexo-extension task with
upper limbs determines changes of EEG synchronization and
functional networking [6]. However, a method which allows
to simultaneously monitor and measure brain functioning and
the execution of a finalistic task as reaching and grasping is
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not yet available. Nevertheless, this would allow to evaluate
the upper limb kinematic features during the recovery process
after stroke as well as to understand the pathophysiological
processes which can promote or negatively condition the
clinical improvement. Here we describe a method which relies
on the assessment of the synchronization between high-density
electroencephalography (EEG) and the data gathered by a
stereophotogrammetric system. The results of this study could
be particularly relevant for the evaluation of the mechanisms
of functional recovery of finalist movements, such as reaching
and grasping, involving not only motor cortex in patients with
acute stroke.

II. METHODS
A. Population

Ten healthy subjects were recruited (40.2 + 7.4 years).
The research was approved by the local ethics committee
and complies with the Helsinki Declaration. Written informed
consent was obtained for each subject.

B. Experimental Design

The motor performance during reaching and grasping
(left/right arm) was simultaneously assessed by an optoelec-
tronic system equipped with 8 infrared cameras and a high-
density EEG equipped with 64 channels (NEURO PRAX
EEG, neuroConn). The net was adjusted so that Fpz, Cz, Oz,
and the preauricular points were correctly placed according
to the international 10/20 system. The data were recorded
at a sampling rate of 512 Hz. The motor task consisted
in the execution of reaching&grasping movements for 15
times (trials) for each arm while the subject was seated in a
relaxed position. Each reaching&grasping task was preceded
and followed by a rest period of 10 s, namely Restl (pre-
movement), and Rest2 (post-movement). The EEG recording
was carried out under three different experimental conditions:
Restl (pre-movement), Rest2 (post-movement) and Movement
(’reach&grasp” movement). Rest (10 s) and Movement (2-4 s)
blocks were interleaved and separated by event-markers. The
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motor performance during reaching and grasping was recorded
by placing 18 markers on anatomical landmarks in accordance
with a validated upper limb and trunk biomechanical model
(RAB model - modified) [7].
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Fig. 1: Speed of the wirst during the reaching&grasping cycle. The red line
indicates the 5% threshold used for marking the starting and ending time-
points of the movement.

C. Movement Analysis

A threshold on the wrist marker velocity was used to detect
the beginning and end of the reach&grasp cycles. The onset
of movement from the initial position was identified as the
instant when the velocity of the wrist marker exceeded 5%
of peak reaching velocity. Similarly, the end of the cycle was
associated to a decrease in wrist marker velocity to less than
5% of the maximum velocity upon returning the arm to the
initial position (Fig. 1). Using the synchronized systems, it
was possible to identify on the EEG recording the events as
detected by this analysis in order to define the different blocks
(Restl, Movement and Rest2).

D. EEG Data Analysis

Data were preprocessed in Matlab R2014b (Math-
Works, Natick, MA) using scripts based on EEGLAB 12
(http://www.sccn.ucsd.edu/ eeglab), as well as dedicated in-
house code. The EEG recordings were band-pass filtered from
1 to 47 Hz. Visible artifacts (i.e. eye movements, cardiac
activity, and scalp muscle contraction) were removed using
independent component analysis (ICA) [8] and data were
processed using a common average reference. EEG segments
were divided in epochs of 2 s each. For each electrode and
experimental condition, Fast Fourier Transform (FFT) was
applied to non-overlapping epochs, and then averaged across
epochs under the same condition. A non-overlapping 2-s Ham-
ming window was used to avoid spectral leakage. The event-
related synchronization/desynchronization method (ERS/ERD)
was used for quantifying the task-related changes in brain
activity in « and S frequency bands [4]. ERD/ERS values
were defined as the percentage decrease/increase of the power
spectral density (PSD (V2 /H z) during task (Movement) with
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respect to the baseline value (pre-movement, Restl and post-

movement, Rest2), as follows:

PSDto:lSk} — PSD?CSt (1)
PSD

rest

ERD® =

where the symbol « indicates the alpha band. The derivation of
the corresponding equations for ERD and 6, # and /3 bands are
straightforward. Accordingly, event-related PSD decrements
representing a decrease in synchronization of the underlying
neuronal populations and indicating cortical activation resulted
in negative values. Finally, the Wilcoxon test with Bonferroni
correction (p < 0.05) was performed to detect significant
differences between PSD in Rest and Movement, respectively.

E. EEG Source Imaging and Functional Connectivity

EEG data were processed wusing standard low-

resolution brain electromagnetic tomography
(sSLORETA) software for localizing the cortical sources
(http://www.uzh.ch/keyinst/NewLORETA/LORETAOQ1.htm).
The EEG cross-spectra and the corresponding 3D-cortical
distribution of the electric neuronal generators were computed
for each frequency band (6: 1-4 Hz, 6: 4.5-7.5 Hz, «: 8-12.5
Hz, 5: 13-20 Hz), under the three conditions and for each
subject separately [9], [10]. The solution space was restricted
to the cortical gray matter and the Montreal Neurologic
Institute average MRI brain (MNI152) [11] was used as a
realistic head model.
Lagged linear connectivity, i.e. excluding coherences with
zero phase lag, “lagged coherence” [12], was calculated for
each epoch in the same frequency ranges and a whole-brain
Brodmann areas (BAs) atlas was used for selecting the 42
BAs in each hemisphere as regions of interests (ROIs) for
performing the functional connectivity (FC) analysis between
pairs of ROIs. ROIs were sorted according to their functional
role as somatosensory, motor, executive, emotional regulation,
memory, attention, sound, visual, olfactory and not well
studied [13]. The resulting values were averaged across
epochs. The connectivity matrices of all subjects in the Restl,
Rest2 and Movement were then separately averaged, resulting
in one connectivity matrix for each condition and arm.

F. Graph Analysis of Network Topology

Graph-theoretical analysis was used for assessing the net-
work model properties [14]. The brain network was con-
structed based on the unthresholded values of the corre-
sponding lagged coherence values as the weight of the edge
connecting each pair of ROIs (nodes) [15]. After constructing
the complete weighted graph, network parameters were calcu-
lated. Graph theoretical analysis was performed by using the
open-source BCT toolbox (Brain Connectivity Toolbox, BCT,
https://sites.google.com/site/bctnet/Home).

The local topological properties of the brain networks were
calculated: weighted clustering coefficient (CW) and weighted
characteristic path length (LW) as a measure of segregation
and integration of the network, respectively. In each subject,
the values of CW and LW of each band were normalized
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to the respective global mean value obtained after averaging
each such parameter through the four bands (9, 0, «, ). The
measure of network small-worldness (SW) was defined as the
ratio between CW and LW

cw
SW = W 2)

Finally, for each EEG frequency band the Friedman test was
performed to detect significant differences between CW, LW
and SW across the three different experimental conditions
(Rest1, Rest2, Movement) and separately for the left or right
arm.

III. RESULTS
A. ERD/ERS Results

The ERD maps were derived for all epochs, frequency
bands, arms and subjects and used for both individual and
group analyses (Fig. 2). The mean maps revealed an increase
of ERD over the sensorimotor cortex in « and 3, comparing
Movement vs. Restl and Movement vs. Rest2 for both right
and left arm. The desynchronization was maximum over the
contralateral central areas and, secondarily, over the ipsilateral
motor areas for both arms (most clearly for Rest2). Moreover,
Rest2 highlighted a more prosperous activity in « and
frequency band compared to the pre-movement condition.

LM vs. REST 1

RM vs. REST 1

Fig. 2: Event-related desynchronization in « and 3, comparing Movement vs.
Restl and Movement vs. Rest2; RM = right arm movement, LM = left arm
movement.

B. FC and network results

Figure 3 illustrates the connectivity matrices in the four
considered frequency bands (4,0 first row, o, 8 second row)
for the Rest2 (a) and Movement (b) conditions, respectively.
In Figure 3(b) the matrix was obtained for the movement of
the right arm, but the same trend was observed for the left
one. As it can be visually appreciated, the movement induces
a decrease in connectivity. Such a behaviour was observed for
both arms, in all frequency bands but stronger in « and /3 and
with respect to both rest conditions (Restl and Rest2).

The topological parameter comparisons for the three condi-
tions at different frequency bands and the statistical results are
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shown in Tables I and II. The Friedman test showed only a
reduced LW in Rest2 versus Restl in S band during movement
with left arm (p = 0.04), while no statistically significant
difference was observed during movement with right arm
(p = 0.06). For CW and SW no significant difference was
found among Restl, Rest2 and Movement in right and left
tasks.

IV. DISCUSSION

During movement, electrical changes are elicited in both the
contralateral and ipsilateral somatosensory and motor areas, as
well as in the frontal and occipital areas, bilaterally. Compar-
ing the Rest2 (post-movement resting) and Movement condi-
tions, arm movement of the dominant hand is accompanied
by a more pronounced ERD in the contralateral hemisphere
compared to the ipsilateral side in both « and /3 bands, whereas
movement of the non dominant arm is characterized by a
less lateralized ERD. Different PSD patterns of Restl and
Rest2 have been observed in the o and 3 frequency bands.
In particular, PSD of Rest2 was greater than that of Restl.
As consequence the ERD of Movement vs. Rest2 was greater
than ERD of Movement vs. Restl. These results are probably
related with the mu-rhythm suppression in Rest1 reflecting the
motor planning and with the post-movement power rebound
which is probably related with the motor inhibition in Rest2
[4]. Although the significance for CW and the “small world”
properties has not been reached during movement and rest
conditions, except for LW as discusses above, many changes
with different frequency bands were observed. The limitation
in terms of statistical significance could be identified in the
low number of subjects that were investigated [16]. In con-
sequence, our preliminary results on functional connectivity
and network analysis do not allow further speculations besides
the observation that both lagged coherence analysis and LW
analysis are concordant in highlighting a greater functional
connectivity in 5 band during Rest2 after left movement.
Indeed, the graph analysis showed that Rest2 is characterized
by a greater integration of the global network with respect
to Restl. On the other side, after right movement the graph
analysis showed no significant difference among Rest1, Rest2
and Movement, while functional connectivity analysis showed
results similar to those observed after left movement. This
different behaviour could be related with the requirement of a
greater effort for performing the task with the non-preferred
arm (left side in our sample) [17], [18].

V. CONCLUSION

Though preliminary, these data shed light on the possibility
of detecting and interpreting the activity changes induced by
acute pathologies, such as stroke, and for monitoring the mod-
ulation of electrical brain activity by the motor performance
over time, setting the basis for identifying the neurophysio-
logical processes underlining recovery.
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Fig. 3: Functional connectivity in Rest2 (a) and Movement (b) conditions averaged across subjects in 9,60, and S frequency bands. LH, left hemisphere;
RH, right hemisphere. Regions are the row and column indices of the connectivity matrices and the corresponding matrix element provides the color-coded
linear lag coherence value, as indicated by the color bar.
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TABLE I: Friedman test for CW, LW and SW between the three different experimental conditions (Restl, Rest2 and Movement) for each EEG frequency
band during the trials performed with the right arm.

RIGHT ARM
CW LW SwW
Rest1 Rest2 Movement pvalue Restl Rest2 Movement pvalue Restl Rest2 Movement pvalue
Delta 0.077 -0.13 0.212 0.41 -0.138  0.193 -0.173 0.49 -0.36 0.25 -0.486 0.9
-0.648  -0.751 -0.465 -0.485  -0.805 -0.534 -2.007  -2.902 -0.886
Theta  0.103  -0.064 0.427 0.27 -0.227  0.086 -0.326 0.27 -0.581  -0.664 -1.094 0.49
-0.604  -0.823 -0.73 -0.487  -0.897 -0.619 -1.043  -1.084 -0.614
Alpha  0.756 0.783 0.248 0.15 -0.686  -0.712 -0.405 0.74 -1.207  -0.933 -0.568 0.27
-0918  -0.872 -0.948 -0.896  -0.745 -0.901 -1.391  -0.818 -0.928
Beta -0.936  -0.588 -0.887 0.07 1.05 0.433 0.904 0.06 -0.593  -1.219 -1.476 0.27
-0.281  -0.492 -0.7 -0.483 -0.71 -0.782 -0.851 -2.576 -1.563

TABLE II: Friedman test for CW, LW and SW between the three different experimental conditions (Restl, Rest2 and Movement) for each EEG frequency
band during the trials performed with the left arm.
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LEFT ARM
CwW LW SW
Restl  Rest2 Movement pvalue Restl Rest2 Movement pvalue Restl Rest2 Movement pvalue
Delta  0.025 -0.05 0.156 0.67 -0.194  -0.033 -0.19 0.67 -0.533  -0.587 -1.111 0.3
-0.554  -0.608 -0.851 -0.411 -0.65 -0.705 -0.999 -1.123 -2.408
Theta -0.025 -0.186 0.189 0.49 -0.064 0227 -0.172 0.12 -0.16  -0.796 -0.654 0.9
-0.704  -0.62 -0.692 -0.727  -0.705 -0.721 -2.896  -1.184 -1.01
Alpha 0941 1.076 0.649 0.49 -0.847  -0.996 -0.702 0.49 -1.328  -1.348 -0.898 0.49
-0.646  -0.564 -0.629 -0.447  -0.435 -0.369 -0.684  -0.828 -0.498
Beta -0.941 -0.84 -0.994 0.49 1.105 0.802 1.064 0.04 -0.574  -0.352 -0.788 1
-0.379  -0.387 -0.32 -0.486  -0.589 -0.548 0.86 -1.601 -0.673
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