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Abstract—We aim to reduce the cost of sound monitoring for
maintain machinery by reducing the sampling rate, i.e., sub-
Nyquist sampling. Monitoring based on sub-Nyquist sampling
requires two sub-systems: a sub-system on-site for sampling
machinery sounds at a low rate and a sub-system off-site for
detecting anomalies from the subsampled signal. This paper
proposes a feature reconstruction method for enabling anomaly
detection from the subsampled signal. The method applies a long
short-term memory-(LSTM)-based network for reconstructing
features. The novelty of the proposed network is that it receives
the subsampled time-domain signal as input directly and recon-
structs the feature vector of the original signal. Experimental
results indicate that our method is suitable for anomaly detection
from the subsampled signal.

Index Terms—machine condition monitoring, sub-Nyquist
sampling, neural network, long short-term memory (LSTM)

I. INTRODUCTION

Low-cost sound monitoring is required for maintaining

machinery. Typically, skilled maintenance technicians hear the

sounds from machinery and determine the overall condition.

However, a shortage of skilled workers has become a serious

issue, making an automated system for continuous monitoring

of machinery sounds a necessity. For continuous monitoring,

sensing devices must be set on-site at all times, and any

recorded sounds must always be sent off-site, so the sensing

cost is the most serious issue. The sensing cost consists of

that of power consumption, sensing devices including analog-

digital-converters (ADCs), network communication, etc. In

general, these costs decrease as the data size, which corre-

sponds to the sampling rate, decreases. Therefore, we aim to

reduce the cost of monitoring by reducing the sampling rate,

i.e., sub-Nyquist sampling.

We herein propose a method for subsampling the original

sound and for detecting anomalies from the subsampled signal.

A monitoring system based on sub-Nyquist sampling requires

two sub-systems: a system on-site for sampling machinery

sounds at a low rate and a sub-system off-site for detecting

anomalies from the subsampled signal. The former sub-system

requires clarifying what subsampling method provides suffi-

cient performance for anomaly detection. The latter requires

clarifying how can we detect anomalies from the subsampled

signal. In our previous work [1], we have shown subsampling

methods providing sufficient performance, i.e. random sam-

pling, co-prime sampling, and sparse ruler sampling, and so

we focus on the anomaly detection method for the latter sub-

system in this paper.

The anomaly detection part of the proposed method is

based on a long short-term memory-(LSTM)-based feature

reconstruction. Research on anomaly detection has been done

for numerous applications, e.g., acoustic surveillance [2] [3],

combustion instability prediction [4], and structural health

monitoring [5]. Anomaly detection is defined as detecting an

outlier from a model of normality, and it can be performed by

training the model of normality from a training dataset. The

training dataset regularly includes only normal data, i.e., its

task is unsupervised machine learning. In the field of acoustic

anomaly detection, Gaussian mixture models (GMM) and hid-

den Markov models (HMM) have been the most widely used

[2] [3]. Several works have proposed support vector machines

(SVM) [4]. Also, research on anomaly detection based on

neural networks has been done for many years [5][6]. In most

cases, the network layout for modeling the normal behavior

is an “autoencoder.” Versions of the autoencoders have been

improved using LSTM recurrent neural networks (RNNs),

which can model a time series with a temporal correlation

[7][8][9][10]. However, the conventional methods do not work

for anomaly detection from the subsampled signal. To solve

the problem, we propose an end-to-end approach, i.e., the

proposed network receives the subsampled time-domain signal

as input directly and reconstructs the feature vector yielded

from the Mel spectrogram of the original signal, although

conventional networks [8][9] receive the feature vector yielded

from the Mel spectrogram. Hereafter, we call the conventional

networks “feature-input and feature-output” (FIFO) and call

the proposed network “time-domain-input and feature-output”

(TIFO).

II. RELATION TO PRIOR WORK

The main contribution of this paper is to propose a feature

reconstruction method for enabling anomaly detection from

the subsampled signal, and the detection performance based

on the proposed TIFO-type feature reconstruction is higher

than that of the conventional methods such as the FIFO.

The conventional FIFO-type networks [8][9] cannot recon-

struct the feature vector of the original signal. In the FIFO,

the input feature vector yielded from the subsampled signal

has already lost information about frequencies higher than the

Nyquist frequency, and feature reconstruction does not work,
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Fig. 1. Subsampling observation model

so anomaly detection also fails. In contrast, the subsampled

time-domain signal keeps some information about frequencies

higher than the Nyquist frequency, so the TIFO can extract it.

We have already proposed another conventional LSTM-

autoencoder network [1]. This conventional network receives

the subsampled time-domain signal as input and reconstructs

the time-domain signal without missing data, and the network

can be called ”time-domain-input and time-domain-output”

(TITO). The TITO-type network can also exploit information

about frequencies higher than the Nyquist frequency. However,

the detection accuracy of the TIFO is higher than that of the

TITO because it is easier to reconstruct the feature vector than

to reconstruct the original time-domain signal. That is, if the

original time-domain signal is completely known, the feature

vector can be calculated from it, but the reverse is not true.

In Section V, we present an experimental comparison of the

TIFO and the TITO.

III. PROBLEM STATEMENT

A. Anomaly Detection from Subsampled Signals

We define the real-valued discrete-time original sound of

a short time frame represented by a column vector x of

dimensions M × 1. The observed signal y is obtained by

subsampling the original sound x. The y is the m×1 column

vector, the elements of which are the result of the inner

products between (Φj)
m
j=1 and x. The (Φj)

m
j=1 corresponds

to the j-th sample. Only one element of Φj is 1, and the other

elements are 0, and Φ = [Φ1|Φ2|...|Φm]T contains at most

one nonzero entry (= 1) in each row or column. Figure 1

illustrates this subsampling observation model. The following

undetermined linear equation can be introduced:

y = Φx. (1)

The problem to be solved is to detect anomalies in an unknown

x from given Φ and y. In general, Φ changes every frame, the

number of candidates of Φ may be enormous, and implemen-

tation is difficult. In this study, the sampling pattern repeats

with period M to limit the number of candidates of Φ. Also,

the division number D as a positive integer is introduced, i.e.,

the frame shift is M/D. Therefore, the number of candidates

of Φ is limited to D, and Φ can be repeated with period D
frames. This paper clarifies how we can detect anomalies from

Φ and y.

B. Subsampling methods

This section explains the candidates of the sampling meth-

ods. As described in Section III-A, the sampling pattern

repeats with period M , so we assume that all the methods

cut the sampling pattern at the end of every frame.

1) Uniform Sampling: Uniform sampling is the simplest

method. The signal is sampled at time kT using uniform

sampling, where T is a unit-time interval, and

k ∈ {0, u, 2u, 3u, · · · } , (2)

where u is a constant positive integer. The ρ is defined as the

number of the observed samples divided by the number of

original samples. The ρ of the aforementioned case is 1/u.

2) Random Sampling: The signal is sampled at kT using

random sampling, where k is selected from all the integers

using Bernoulli sampling with a probability equal to ρ. The

original signal can be reconstructed at high accuracy from the

signal recorded using random sampling on the condition that

it is sparse in the frequency domain [11][12]. As described

in Section III-A, the number of candidates of Φ needs to be

limited. Therefore, the sampling pattern randomly generated

once is reused with period M .

3) Co-Prime Sampling: The signal is sampled at kT using

co-prime sampling, where

k ∈ {0, u, 2u, 3u, · · · } ∪ {v, 2v, 3v, · · · } , (3)

and u and v are co-primes. The ρ is (u+ v − 1)/uv.

4) Sparse Ruler Sampling: The signal is sampled at kT
using sparse ruler sampling, where k is a set called a circular

sparse ruler K such that for every l = 0, · · · , L − 1 there

must exist at least one pair of elements k1, k2 ∈ K satisfying

(k1−k2) mod L = l [13]. The L is the period of sparse ruler

sampling. If K contains a minimum number of elements, it is

called a minimal sparse ruler. The ρ is |K|/L. Minimal sparse

rulers have been found for certain L values, so we can choose

the known minimal sparse rulers as the sampling pattern.

IV. PROPOSED FEATURE RECONSTRUCTION AND

ANOMALY DETECTION

In this section, the feature reconstruction method for

anomaly detection is explained. Figure 2 shows the network

layout for feature reconstruction. The network consists of the

input layer, one feedforward layer, two LSTM layers, and an

output feedforward layer. All the layers are fully connected.

The input layer has M units receiving the subsampled signal,

and zeros are padded at the (M − m) removed points. As

described in Section I, its key point is that the layout is end-

to-end, i.e., the input is the subsampled time-domain signal,

and the output is the reconstructed feature vector. This end-to-

end layout called the TIFO is utilized to solve the problem of

the conventional FIFO-type networks not working for anomaly

detection from the subsampled signal.

The output of the reconstruction network is corresponded

to the feature vector yielded from the Mel spectrogram. The

output feature vector is similar to that of the conventional
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Fig. 2. Layout of feature reconstruction network

FIFO-type networks [8][9]. The STFT-frequency scale is con-

verted to the Mel-frequency scale using a filter-bank with 26

triangular filters. The first 26 dimensions of the feature vector

are the logarithmic powers of the Mel spectrogram:

Plog(τ, n) = log(P (τ, n) + 1.0), (4)

where τ is the frame index, n = 1, · · · , 26 is the Mel-

frequency index, and P (τ, n) is the power of the Mel spec-

trogram. The next 26 dimensions are the positive first order

differences:

D(τ, n) = Plog(τ, n)− Plog(τ − 1, n). (5)

Also, the frame energy and its derivative are included. There-

fore, the dimension of the feature vector is 54.

Training was performed by minimizing the average error

between the feature vector calculated from the original time-

domain signal and the output vector over a training set. The

parameters of the network were trained so that the network

outputs the feature vector of the signal without missing data.

The rectified linear unit (ReLU) [14] was utilized as the

activation function after the feedforward layers. In addition,

the hyperbolic tangent was applied as the activation function

after the LSTM layers. We utilized batch normalization [15]

for each layer. Batch normalization is known to be effective for

training acceleration. However, in regression like this task, the

scales of the input tend to be very different between frames,

and the batch normalization does not work. The subsampled

signal was frame-wise normalized before input to solve this

problem. We applied Adam [16] for training. If the norm of

a gradient was greater than one, the gradient by its norm was

divided [17]. We utilized the dropout [18] for the connections

before both LSTM layers, and the dropout rate was set to 0.1.

After feature reconstruction, another process for anomaly

detection must be performed. Anomaly detection is an un-

supervised learning task, so GMM, one-class SVM, etc. can
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Fig. 3. Spectrogram of a part of the original sound. The X-axis shows the
time in seconds.

TABLE I
CO-PRIME PAIRS FOR EXPERIMENTAL EVALUATION

u v ρ

5 7 0.31
7 8 0.25

be used as the detection process. Also, the FIFO-type au-

toencoders [8][9] can be applied after the proposed TIFO. In

Section V, we present experimental results when using GMM.

V. EXPERIMENTAL RESULTS

The experimental evaluation was conducted to investigate

whether or not the proposed algorithm for anomaly detec-

tion can work well. The signals subsampled using different

sampling methods were used as the observed signal, different

reconstruction algorithms were applied for the subsampled

signals, and the results of anomaly detection were compared.

To show industrial usefulness, we used the sound of a real

automated machine. The machine has a lot of parts such as

mechanical arms and continues to do a same task repeatedly.

When a machine repeatedly performed a series of work, the

original sound was recorded (See Fig. 3). The total length of

the original sounds was 10 minutes of 16-bit audio signals

sampled at 16 kHz. The sounds were divided into 5 minutes

of data for training and 5 minutes of data for evaluation, with

both of them corresponding to the normal condition. Because

each of the parts works multiple times within several seconds,

the training data of 5 minutes includes a sufficient amount

of the sounds from each of the parts. To generate abnormal

evaluation data, we randomly selected a frequency for each test

from 4, 5, 6, and 7 kHz, and the sinusoidal wave of the selected

frequency was mixed into the normal evaluation data, where

the power ratio between the sinusoidal wave and the original

sound was set to -15 dB. Actually, in many cases, anomalies

cause friction, and it tends to amplify certain frequencies, so

anomalies were simulated by adding sinusoidal waves.

The Hanning window with the frame size of M = 1024
and the frame shift of 512 were applied, so the division

number was D = 2. The length of the sequence fed to the

network was 16 frames, and anomaly detection was used only

for these frames. The mini-batch size was set to 256. The

co-prime pairs shown in Table I were chosen for co-prime

sampling. The minimal circular sparse rulers shown in Table II

were chosen for sparse ruler sampling. These minimal circular

sparse rulers were generated from length-⌊L/2⌋ minimal linear
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TABLE II
CIRCULAR SPARSE RULERS K FOR EXPERIMENTAL EVALUATION

L− 1 ⌊L/2⌋ K |K| ρ

15 8 {0, 1, 5, 6, 8} 5 0.31
23 12 {0, 1, 7, 8, 10, 12} 6 0.25

sparse rulers. The following three reconstruction methods

were utilized: (a) The first was an FIFO-type network similar

to [8][9], the input and the output of which are the 54-

dimensional feature vector of the subsampled signal and that

of the original sound, respectively. For the input layer, the

number of units was changed to 54. The hidden layers were the

same as those in Fig 2. (b) The second was the conventional

TITO-type network [1], the input and the output of which

are the time-domain signal of the subsampled signal and

that of the original sound, respectively. The number of units

was changed to the frame size M for both the input layer

and the output layer. The hidden layers were the same as

those in Fig 2. (c) The third was the proposed TIFO-type

network, the layout of which is shown in Fig 2. For (a) and

(c), GMM was applied in anomaly detection after feature

reconstruction, and the number of mixture components was 8.

For (b), identically to the previous work [1], anomalies were

detected by thresholding the average error at the sampling

points between the subsampled signal and the reconstructed

signal.

Figures 4 and 5 show the evaluation results. These results

show that anomaly detection based on the FIFO failed and

that the other two approaches succeeded. They indicate that

difficulty occurs in reconstructing the feature vector from that

of the subsampled signal; also, the FIFO-type reconstruction

is not suitable for anomaly detection from the subsampled

signal. Furthermore, a comparison of (b) with (c) shows that

the detection performance of the proposed method was higher

than that of the TITO. These results indicate that the proposed

TIFO-type network improves the detection performance as

described in Section II. In addition, the results of (b) were

that the detection performance of uniform sampling was far

lower than that of non-uniform sampling methods, whereas

the results of (c) were that the detection performance of

uniform sampling was at the same sufficient level as that

of non-uniform sampling methods. Considering that aliasing

must occur in the case of uniform sampling, these results

indicate that the proposed TIFO can extract information about

frequencies higher than the Nyquist frequency even from

aliasing components mixed with low-frequency components.

VI. CONCLUSION

To reduce the cost of sound monitoring, we proposed a

feature reconstruction method for anomaly detection from the

subsampled audio signals. The proposed method is based on

the LSTM-based network called TIFO, and its key point is that

it receives the subsampled time-domain signal and reconstructs

the feature vector of the original signal. The TIFO-type

structure enables detecting anomalies from the subsampled
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Fig. 4. ROC curves in the case that ρ is about 0.33. X and Y show the false
positive rate and the false negative rate respectively.

signal. Experimental results showed that the proposed TIFO

is suitable for anomaly detection from the subsampled signal.
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