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Abstract—Union of Subspaces (UoS) is a new paradigm for
signal modeling and processing, which is capable of identifying
more complex trends in data sets than simple linear models.
Relying on a bi-sparsity pursuit framework and advanced non-
smooth optimization techniques, the Robust Subspace Recovery
(RoSuRe) algorithm was introduced in the recent literature as
a reliable and numerically efficient algorithm to unfold unions
of subspaces. In this study, we apply RoSuRe to prospect the
structure of a data type (e.g. sensed data on vehicle through pas-
sive audio and magnetic observations). Applying RoSuRe to the
observation data set, we obtain a new representation of the time
series, respecting an underlying UoS model. We subsequently
employ Spectral Clustering on the new representations of the
data set. The classification performance on the dataset shows
a considerable improvement compared to direct application of
other unsupervised clustering methods.

Index Terms—Sparse learning, Classification, Magnetic sen-
sors, Acoustics.

I. INTRODUCTION

Recent developments in sensor technology have provided
many possibilities in developing real-time transportation sys-
tems technologies. Traffic flow optimization, dynamic traffic
management solutions, vehicle counting, travel time estima-
tion, and other traffic modeling studies frequently require clas-
sification and identification of streams of vehicles. Moreover,
accurate estimation of traffic parameters needs to be performed
in real time for decision makers [1] [2]. Conventional vehicle
identification methods such as license plate recognition and
Radio Frequency Identification Tags (RFID) have been widely
used for that purpose for so long [3] [4]. Unfortunately,
such image-based methods are not appropriate for studies that
require low-power consumption and low cost. Additionally,
privacy issues becoming front and center have raised the
concern over with image acquisition. On the contrary, further
alternatives such as magnetic sensors and microphones are
inexpensive and do not raise privacy concerns [5] [6]. Vehicles
are primarily of metallic structure that perturb the earth’s
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magnetic field, and hence produce unique magnetic signatures
that have been served to discriminate between vehicles [7] [8].
Audio sensors have also been extensively employed in the area
of vehicle classification for different applications, and have
proven their effectiveness and robustness [9] [10].

The objective of this work is to devise a multi-modal
approach to vehicle classification and identification using
an ensemble of sensors consisting of a magnetometer and
three microphones. We consider a more realistic unsupervised
learning scenario, where no training dataset is provided and
adopt a data driven approach to determine vehicle signatures
utilizing key features extracted from each sensor modality. We
subsequently combine the features from each sensor modality
to generate a desirable universal feature and increase the
classification rate of specific vehicle classes. Despite simplicity
in acquisition, magnetic and audio data are challenging to
directly exploit due to the dimensionality of the collected data.
For feature extraction, we use RoSuRe, where high dimen-
sional data is assumed to lie in a union of low dimensional
subspaces capturing underlying common hidden features, al-
beit possibly adversely affected by errors. Sparse modeling
have been extensively utilized in the computer vision and
machine learning literature to obtain linear models under the
influence of perturbation [11] [12] [13] [14] [15]. We consider
the procedure studied in [16], in which a bi-sparse model,
known as Robust Subspace Recovery via Bi-sparsity Pursuit,
is employed as a framework to recover the union of subspaces
in the presence of sparse corruptions. The UoS structure is
unveiled by pursuing sparse self-representation of the given
data. We employ the bi-sparsity framework to recover the
underlying subspace structure in each sensor modality and
obtain a finer level of classification by combining them. We
also use the resulting UoS structure to classify new observed
data points, which illustrates the generalization power of our
technique.

The paper is organized as follows. In Section 2, we pro-
vide the fundamental concepts of the Bi-sparsity pursuit for
RoSuRe. In Section 3, we introduce the different sensing
modalities that will be utilized for experimentation along with
the pre-processing, feature selection and extraction techniques.
In Section 4, we present the experimental results of our
approach, while Section 5 provides concluding remarks.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1626



II. ALGORITHM: ROBUST SUBSPACE RECOVERY VIA
BI-SPARSITY PURSUIT

In this Section, we present a summary of the Robust Sub-
space Recovery via Bi-Sparsity Pursuit (RoSuRe) introduced
in [16]. The algorithm assumes that all data samples may
be corrupted by additive sparse errors. Therefore, the UoS
structure is often corrupted and each data sample deviates
from its original subspace. Precisely, considering a set of
data samples X = [x1,x2, ......,xn], where xk ∈ Rm is
a data point, n corresponds to the number of observations
and m specifies the number of variables or features in each
observation, the columns of the matrix X may be partitioned
such that each part XI is decomposed into a low dimensional
subspace and a sparse corruption:

XI = LI +EI, I = 1, ........., J, (1)

where each LI serves as a single low dimensional subspace of
the original data, and L = [L1|L2|..........|LJ ] is the desired
union of subspaces. Furthermore, the partition recovers the
clusterings of the original data samples corrupted by the
error E = [E1|E2|......|EJ ]. The objective of this approach
is to simultaneously retrieve the subspaces and the noiseless
samples from the observed noisy data. The RoSuRe via Bi-
Sparsity pursuit is based on the idea of self-representation. In
other words, li can be represented by the other samples from
the same subspace S(li).

li =
∑

i6=j,Ij∈S(Ii)

wijlj. (2)

The above relation can be represented in a matrix form as
follows,

L = LW. (3)

Under a suitable arrangement of the data points, the sparse
coefficient matrix W is an n× n block-diagonal matrix with
zero diagonals provided that each sample is represented by
other samples only from the same subspace. More precisely,
Wij = 0 whenever the indexes i, j correspond to samples
from different subspaces. As a result, the majority of the
elements in W is equal to zero. After further approximations
and relaxations, the problem is formulated as follows,

min
W,E,L

‖W‖1 + λ‖E‖1,

s.t. X = L+E, L = LW, Wii = 0.
(4)

where ‖‖1 denotes the l1 norm, i.e. the sum of absolute values
of the argument. The minimum of Eqn.(4) is approximated
through linearized Alternating Direction Method of Multipliers
ADMM [17] and the sparsity of both E and W is traced until
convergence. See [16] for more details.

III. MULTI-MODAL SENSING

As previously stated, the goal is to recover the union of
subspace structure underlying the data measurements from
each sensor modality and then integrate the obtained struc-
tures to increase the classification rate and support decision

making. A roadside sensor system was exploited to collect
data from passing vehicles using various sensors, including
a camera, microphone, laser range-finder, magnetometer, and
low-frequency RF antenna. In this study, we are using the sig-
natures captured using passive magnetic and acoustic sensors.
The magnetic signatures are recorded using a single three-axis
magnetic sensor, while the acoustic data is collected by a set
of three dimensional microphones. The sensors were mounted
on a rigid rack for ease of deployment and management. The
data collection was conducted in a park environment, with
limited public interference. The data is collected for seven
different vehicles; two SUVs, one sedan and four trucks. The
two SUVs are GMC Yukon and Hyundai Tucson, the sedan is
Honda Accord. The four trucks are Chevrolet pickup truck, 14
ft rental moving truck and two Ford F-150s, one has a mounted
top on the bed and the other one does not. The seven different
vehicles were driven by the system yielding a total of 546
observations per sensor. Our goal is to analyze the dataset
and distinguish seven classes where each class corresponds
to one car. Furthermore, our goal is to be able to classify a
newly observed dataset, using the structure learned through the
current unlabeled data. For this purpose, the observations were
divided into training and testing as discussed in Table 1. As
shown in the table, we used 50 observations for each car in the
learning phase, and the rest of the observations for validation.
Sample outputs of the magnetometer and microphone are
shown in Figs. 1 and 2.

TABLE I
THE DATASET DESCRIPTION

Vehicle Training points Testing points
Chevrolet Truck 50 29

Ford F-150 (Topper) 50 19
Ford F-150 50 31

GMC Yukon 50 24
Honda Accord 50 41

Hyundai Tuscon 50 20
Uhaul Truck 50 32

Fig. 1. Sample output for magnetometer data.

Acoustic sensors have been analyzed in various applications
related to automatic transportation systems [18] [19] [20].
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Fig. 2. Sample output for audio data.

Mel Frequency Cepstral Coefficients [21] are widely used in
automatic speech recognition literature. They were introduced
by Davis and Mermelstein in the 1980’s, and have been the
state-of-the-art ever since. The mel-frequency cepstrum (MFC)
is a representation of the short-term power spectrum of a
sound, based on a linear cosine transform of a log power
spectrum on a nonlinear mel scale of frequency. We extract and
process MFCCs from our audio data. In our experiments, a low
pass filter was applied to the audio signals to remove noise.
Signals were downsampled from 92 kHz to 64 kHz. The audio
signals were divided into windows of size 0.025 seconds with
a step size of 0.01 seconds to allow some overlap between the
frames, and get a reliable spectral estimate. Finally, the MFFCs
were extracted for each window and averaged to result in 26
log filterbank energies for each observation.

Magnetic sensors operate by detecting the variation in the
magnetic inductance. Magnetic signatures can be characteristic
of the vehicle of interest. Earth’s magnetic field distortion can
be used not only for the detection, but also for the classification
and recognition of transport vehicles [22] [23] [7] [8]. The
three-axis system exploited is capable of producing up to
154 Hz and outputs 16-bit values with 67 Gauss resolution.
In our experiment, a sample rate of 40 Hz has been used.
For calibration, the magnetic signatures were extracted from
the magnetic signals by subtracting the value of the local
magnetic field, which is measured when no car passed by the
sensor. Afterwards, the beginning and the ending of the signal
are determined. Each observation is then normalized and re-
sampled to get a normalized length of 100 samples per axis
and a total of 300 samples per observation. The X, Y and Z
signal amplitudes are re-scaled to be in the [-1,1] interval.

IV. EXPERIMENTAL RESULTS
In the following, we use the RoSuRe technique to recover

the subspace structure embedded in the data associated with
each magnetic or audio observation. The sparse solution of the
problem in Eqn.(4), W, provides important information about
the relations among data points, which may be used to split
data into individual clusters residing in a common subspace.
Observations from each car can be seen as data points from
one subspace.

A. Processing Algorithm

First, we extract the principal components of the data corre-
sponding to each sensor [24]. The largest 100 principal values
for magnetometer data and the largest 20 principal components
for audio data are selected to serve as representatives of the
data in the principal component space. More precisely, we
identify a lower dimensional space whose corresponding basis
vectors maximize the variability of the data. The sparse coef-
ficient matrix Wm {m= audio, magnetometer} is computed,
from RoSuRe, for each sensor modality by solving (4), taking
X as the PCA representation of the data points. Next, we
threshold Wm by its median value. We exploit the resulting
Wm to evaluate an affinity matrix. The affinity matrix is
computed by,

Am = Wm +WT
m. (5)

Subsequently, the spectral clustering method in [25] is
utilized for data clustering. The method can be summarized as
follows, a matrix D is defined to be a diagonal matrix whose
ith diagonal element is the degree of the ith node, i.e. the
sum of ith row in Am. The standard graph Laplacian matrix
is next constructed as follows,

L = D−1/2AmD−1/2.

Next, the eigenvectors s1, s2, ......., sk of L corresponding to
the largest k eigenvalues are computed, where k is the desired
number of clusters. Then, the matrix S = [s1s2..........sk] is
formed by stacking the eigenvectors in columns. Treating each
row of S as a point in Rk, k-means is then used to cluster the
rows of S. Finally, the original point xi is assigned to cluster
j iff row i of the matrix S was assigned to cluster j. The
sparse coefficient matrices for magnetic and acoustic sensors
are respectively illustrated in Figs. 3 and 4. The block-diagonal
structure can be clearly seen from either of the matrices.

Fig. 3. The sparse coefficient matrix for magnetometer data (Wmagnetic).

TABLE II
THE CLUSTERING PERFORMANCE FOR DIFFERENT CLUSTERING METHODS

RoSuRe kmeans GMM HCA
Magnetomter data 86.71% 82.29% 77.14% 64.57%

Audio data 86.57% 52.1% 62.57% 40%
Fused 98.29% 82.29% 77.14% 64.57%
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Fig. 4. The sparse coefficient matrix for audio data (Waudio).

B. Fusing the Two Modalities

In order to improve the performance of our method, the two
sparse matrices Waudio and Wmagnetic are added to produce
one sparse matrix for both modalities, Wtotal. By doing so,
we reinforce the contribution of similar representations that
exist in both modalities. The overall sparse matrix, Wtotal

is displayed in Fig. 5. Observations belonging to one car are
clustered as one subspace in which the contribution of each
sensor is embedded in the entries of the Wtotal. For clustering
by Wtotal, we applied the same spectral clustering approach
that we previously explained. As a result, the classification
accuracy improved to 98.29% as highlighted in Table 2. The

Fig. 5. The overall sparse coefficient matrix (Wtotal)
.

performance of RoSuRe was compared against three widely
used unsupervised clustering algorithms, namely, k-means,
the Gaussian mixture model and hierarchical cluster analysis
(HCA). k-means clustering, also referred to as the Lloyd-
Forgy algorithm, is a computationally efficient method for
cluster analysis in data mining [26]. k-means clustering aims
to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean,
serving as a representative of the cluster. A Gaussian mixture
model is a probabilistic model which assumes all the data
points generated from a mixture of a finite number of Gaussian
distributions with unknown parameters. Mixture models can be
considered as a generalization for k-means clustering to incor-
porate information about the covariance structure of the data

as well as the centers of the latent Gaussians. Mixture models
are in general less sensitive to the initialization of centroids.
They have been used for feature extraction from speech data
and object tracking [27] [28] [29]. Hierarchical clustering is a
technique which aims to build a hierarchy of clusters [30].
For our experiment, we used a bottom-up approach where
all observations start in their own cluster, pairs of clusters
are subsequently merged together according to their closeness.
The euclidean distance, d(xi,xj) = ‖xi−xj‖2, was used as a
proximity measure between each pair of data points. We used
complete-linkage criterion to measure the distance between
clusters where the distance D(X,Y ) between clusters X and
Y is described as follows: D(X,Y ) = max

x∈X,y∈Y
d(x,y)

The results are displayed in Table 2. As shown in the table,
RoSuRe has the highest classification accuracy for both audio
and magnetometer data. Moreover, after fusing the two data
modalities, RoSuRe shows a significant enhancement in the
classification performance.

Additionally, we compared the RoSuRe fusion performance
with the other unsupervised clustering methods through link-
ing the two modalities features. More precisely, we con-
catenated both magnetometer and audio observations in one
vector and we then clustered the new representation of the
data. The results in Table 3 show that, by concatenating the
data, we are not gaining extra information. Moreover, the
classification accuracy after concatenation is the same as that
of the magnetometer data because of the higher dimensionality
of magnetometer observations as compared to audio observa-
tions. Therefore, the results were biased towards the former
modality. Whereas, by integrating the sparse coefficient matrix
corresponding to each modality, we have obviously boosted the
performance of RoSuRe from approximately 86% to 98.29%.

C. Experimental Validation of Classification

After learning the structure of the data clusters, we validate
our results on the test data. We extract the principal compo-
nents (eigen vectors of the covariance matrix) of each cluster
in the original (training) dataset, to act as a representative
subspace of its corresponding class. We subsequently project
each new test point onto the subspace corresponding to each
cluster, spanned by its principal components. The l2 norm of
the projection is then computed, and the class with the largest
norm is selected to be the class of this test point. For the
RoSuRe algorithm, we used the coefficient matrix Wtotal to
cluster the test data points for both magnetometer and audio
data. However, classification on the test data is separately
performed for each data modality. The simulation results are
listed in Table 3. From the results, it is clear that the RoSuRe
technique for the fused data remarkably outperforms the other
clustering methods.

V. CONCLUSION

In this paper, we proposed a novel approach to fuse passive
signal acquired by low power instruments through recovering
the underlying subspaces of data samples from measured data
corrupted by sparse errors. One advantage of using passive
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TABLE III
THE VALIDATION PERFORMANCE FOR THE DIFFERENT CLUSTERING

METHODS

RoSuRe kmeans GMM HCA
Magnetomter data 90.31% 71.43% 61.73% 57.65%

Audio data 90.31% 66.33% 65.82% 53.06%

sensors is the preservation of privacy and lower cost. The
RoSuRe method is used to reliably recover the subspace for
different modalities. It also provides a natural way to fuse the
data by employing the RoSuRe self representation matrix as an
embedding in a shared domain. Experiments on real data are
presented to demonstrate the effectiveness of our method in
solving the problem of subspace fusion with sparsely corrupted
unlabeled data. We also show that the use of multiple sensing
methods enhances the performance, and offers more flexibility.
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