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Abstract—Over more than the last decade, there has been
a significant effort in research to reduce the peak-to-average
power ratio (PAPR) in orthogonal frequency-division multiplex-
ing (OFDM) systems. This effort has been mainly driven by the
need for enhancing the efficiency of power amplifiers. In this
paper, we formulate the PAPR reduction problem as a feasibility
problem in a real Hilbert space, and provide algorithmic so-
lutions based on extrapolated projection methods with suitably
constructed constraint sets. This set-theoretic approach provides
a high flexibility and includes various existing PAPR reduction
techniques as special cases. In particular, it allows for balancing
between the spectral efficiency and signal distortion on a symbol-
to-symbol basis, while supporting arbitrary combinations of
quadrature amplitude modulation (QAM) constellations. More-
over, we extend the proposed approach to reuse the phase of pilot
subcarriers that are simultaneously used for channel estimation.
Simulations show remarkable performance gains resulting from
extrapolation, which makes it possible to achieve a considerable
PAPR reduction in just a few iterations with low computational
cost.

Index Terms—Extrapolated projection methods, OFDM, set-
theoretic PAPR reduction

I. INTRODUCTION

Compared with other modulation methods, orthogonal
frequency-division multiplexing (OFDM) exhibits a high peak-
to-average power ratio (PAPR) [1], [2], which might cause
the transmit signal to exceed the linear region of operation
of power amplifiers, and thereby introduce undesired signal
distortions. Power amplifiers with a large linear region are
highly inefficient in terms of both energy consumption and
costs, so there has been an enormous research effort directed
towards the development of practical PAPR reduction tech-
niques, which include various basic approaches such as coding,
interleaving, or selective mapping [3].

In this study, we focus on set-theoretic approaches to the
PAPR reduction problem because they open up the door to
the development of flexible, low-complexity PAPR reduction
techniques that can be easily implemented in state-of-the-art
OFDM systems with large numbers of subcarriers and very
strict latency requirements.The basic idea behind common
approaches to the PAPR reduction problem is to modify the
waveform of the transmission signal while satisfying certain
constraints such as spectral mask and vector magnitude (EVM)
constraints. In general, these constraints depend on parameters
that change from symbol to symbol (e.g. allocation of pilot and
data subcarriers or constellation size might change between
subsequent OFDM symbols), so there is a strong need for
PAPR reduction techniques that have enough flexibility to
systematically incorporate fast-changing constraints. Against
this background, set-theoretic approaches provide a natural
framework for dealing with the PAPR reduction problem in
modern OFDM systems.

The contribution of this paper can be summarized as fol-
lows. We develop a set-theoretic framework for implementing

PAPR reduction algorithms that can flexibly combine different
frequency-domain constraints and adapt them on a time scale
of two consecutive OFDM symbols. In particular, we propose
a PAPR reduction algorithm for tone reservation (TR) [4],
[5] and iterative clipping and filtering (ICF) [6] (affine/linear
frequency constraints) based on the extrapolated alternating
projection method (EAPM). In addition, we propose a gen-
eralization of this algorithm to non-affine frequency-domain
constraints based on the Gurin-Polyak-Raik (GPR) approach
[7, Sect. 5.2]. The proposed generalization can deal with
arbitrary combinations of constraints related to EVM, spectral
masks, active constellation extension (ACE) [2], and compen-
sation subcarriers. Moreover, we present a heuristic extension
to incorporate non-convex magnitude equality constraints on
compensation subcarriers.

II. PRELIMINARIES

A. Notation

In the following, lower case letters denote scalars, lower
case bold letters denote column vectors, and upper case bold
letters denote matrices. Complex valued vectors a and matrices
A are highlighted by an underscore. The all-zero vector is
denoted by 0, ei denotes the ith unit vector (the vector
dimension will be clear from the context), ak denotes the kth
element of vector a, and I is used to denote an identity matrix.
The cardinality of a set I ⊂ N is denoted by |I|, and the
expected value of a random variable x is denoted by E(x).

Given a closed set C in a finite dimensional real Hilbert
space H with the norm ‖a‖ :=

√

〈a,a〉 induced by the inner

product (∀a,b ∈ H) 〈a,b〉 := aTb, a projection of x ∈ H
onto C is a solution to the following optimization problem:

minimize
y∈C

‖x− y‖. (1)

If C is in addition convex, then (1) has a unique solution that
we denote by PC(x) ∈ C. If C is non-convex, then it is known
that (1) has at least one solution [8, Sect. 5.4]. In this case,
we denote by PC : H → C a mapping that, given a vector x,
always returns a unique point from the solution set of (1).

In the literature, projection methods such as those used later
in this work are typically developed for real Hilbert spaces.
As it is shown in the following, this is not a restriction when
dealing with complex valued signals because the problems
we address in complex Hilbert spaces have an equivalent
reformulation in a real Hilbert space. The remainder of this
section will therefore provide real Hilbert space formulations
of concepts that arise in the context of PAPR reduction for
complex valued signals.

To this end, consider a complex vector v ∈ C
N , and define

its real Hilbert space equivalent v by using the following
bijective mapping from C

N to R
2N :

v = R(v) :=
[

Re{vT }, Im{vT }
]T

∈ R
2N , (2)
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which concatenates the real- and imaginary part of v. In order
to represent the multiplication of a matrix A ∈ C

M×N by a
vector v ∈ C

N in a real Hilbert space such that R (Av) =
R′(A)R(v), we define a similar mapping for matrices:

A = R′(A) :=

[

Re{A} −Im{A}
Im{A} Re{A}

]

∈ R
2M×2N . (3)

In analogy to the set I ⊆ {1, . . . , N} indexing elements of a
complex vector v, we define the index set

IR = I ∪ {k ∈ N| k −N ∈ I}. (4)

for indexing real vectors v = R(v). Note that the standard ℓ2-
norm of a complex vector v is equal to that of its real Hilbert
space equivalent v because

‖v‖22 :=
√

vHv = ‖Re{v}‖2 + ‖Im{v}‖2 = ‖v‖2. (5)

In a complex Hilbert space with elements v =
[v1, . . . , vN ]T ∈ C

N , the ℓ∞-norm is given by

‖v‖∞ = max
k∈{1,...,N}

√

(Re{vk})
2 + (Im{vk})

2, (6)

and an equivalent notion for the corresponding real Hilbert
space can be obtained by defining

‖v‖R∞
:= max

k∈{1,...,N}

√

v2k + v2k+N = ‖v‖∞, (7)

which satisfies all properties of a norm in R
2N . Given a

complex vector v ∈ C
N or a complex matrix A ∈ C

M×N , we
use the convention that v = R(v) and A = R′(A) throughout
the subsequent sections.

B. OFDM System and Basic Definitions

Let c ∈ C
N be an OFDM symbol with N subcarriers in

the frequency domain, each of them containing a complex
valued constellation point. Since peaks in the time-domain
signal, which is obtained by applying the inverse discrete
Fourier transform to c, can increase owing to digital-to-analog
conversion, we typically approximate the analog signal by
digitally upsampling with a factor of L ≥ 4 [9]. By doing
so, we gain information about the magnitude of peaks in the
analog time-domain signal. More precisely, upsampling can be
captured by defining a zero-padded vector

ĉ =
[

cT ,0T
]T

∈ C
NL (8)

and a discrete Fourier transform (DFT) matrix F ∈ C
NL×NL

with elements

F k,l =
1√
NL

e−j2π
νktl

NL , (9)

where (∀k, l ∈ {1, . . . , NL}) νk = k − N/2 − 1, and tl =
l−1. The digital approximation of the continuous time-domain

signal is thus given by FH ĉ. Note that F is normalized such

that FFH = FHF = I.
A common measure for the distortion on the data subcarriers

of a modified version x of a given OFDM symbol ĉ is the
EVM, defined by

ǫ(x) =

√∑
k∈Id

|x
k
−c

k
|2

NdP0
, (10)

where the set Id = {i1, . . . , iNd
} indicates the Nd data sub-

carriers. In real transceivers, distortions potentially increasing
the EVM or the bit error rate (BER) are mainly introduced by
peaks exceeding the linear regions of the amplifiers. There-
fore, another important signal property of a frequency-domain
OFDM symbol x is the PAPR, defined as [5], [10], [11]

PAPR(x) =
‖FHx‖2∞

1
NL

E (‖Sdc‖2)
, (11)

where Sd = [ei1 , . . . , eiNd
]T ∈ R

Nd×N is a row selection
matrix for the rows indexed by Id. If the data subcarriers
have an expected power E

(

|ci|
2
)

= P0, (11) simplifies to

PAPR(x) = NL
NdP0

‖FHx‖2∞. (12)

Amplifier non-linearities affect signals with high PAPR more
severely, so PAPR reduction methods allow for the deployment
of less costly amplifiers. These methods are the topic of the
next sections.

III. PAPR REDUCTION BY SET THEORETIC ESTIMATION

In the following section, we formally pose the PAPR
problem as a convex feasibility problem in a real Hilbert
space H = R

2NL. Subsequently, in Sect. III-B, constraints
frequently encountered in the context of PAPR reduction are
defined in terms of closed convex sets.

A. Problem Statement

As can be seen in (12), the maximal magnitude of the
time-domain signal is directly related to the PAPR. There-
fore, given a collection of m convex sets C ′

i representing
frequency-domain constraints such as the maximal EVM or
spectral masks, the PAPR problem can be formulated as the
following convex optimization problem in a real Hilbert space
H = R

2NL

minimize
x∈H

‖FTx‖R∞

subject to x ∈ CF =
⋂

i∈S C ′
i, S ⊆ {1, . . . ,m}

(13)

where F = R′(F) (see (3)). Possible realizations of the sets
C ′

i will be defined in III-B. A solution x⋆ to the problem
in (13) can be obtained with interior point methods, but the
complexity may be prohibitive in real-time applications. As a
result, simple suboptimal approaches are often used. Examples
include ICF [6], TR [4], [5], or the ACE methods [2]. The
idea is to reduce the objective value in (13) to a pre-defined
threshold value θ ≥ ‖FTx⋆‖R∞

. Formally, these methods
replace the problem in (13) by the feasibility problem

find
x∈H

x ∈ CF ∩ CT (14)

where CF =
⋂

i∈S C ′
i, and CT =

{

x ∈ H| ‖FTx‖R∞ ≤ θ
}

is the set of signals bounded by magnitude θ in the time
domain. All of the aforementioned techniques can be related
to this problem by choosing the constraint set CF accordingly.
If the projection onto CF is simple to compute, the problem
in (14) can be solved with projection methods [8], which
only involve operations with low computational complexity,
while commonly achieving much of the progress towards the
solution during the initial iterations [12].

B. Some Relevant Constraint Sets

This section shows how CF can be constructed as the
intersection of multiple constraint sets C ′

i, the projections
onto which are simple to compute. To this end, we define
the following exemplary realizations of the sets C ′

i that are
commonly used in the literature:

1) Subspace of in-band signals: As the modified OFDM
signal is downsampled to the original rate (with subcarriers
indexed by the set Iin = {1, . . . , N}) before transmission,
the out-of-band radiation (i.e nonzero values in frequency bins
exceeding the original bandwidth) caused by clipping needs to
be removed. Therefore, the transmit signal should restricted to
the subspace

C ′
1 :=

{

x ∈ H
∣

∣ (∀k /∈ IR

in), xk = 0
}

(15)

of in-band signals.
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2) Affine subspace of compensation signals: In the TR
method, a subset Ic ⊂ Iin of the subcarriers is not used for
data transmission. These subcarriers transmit dummy symbols
that have the sole purpose of decreasing peaks in the time
domain [4]. Formally, the corresponding frequency-domain
constraint set restricts all but the compensation subcarriers Ic
to their original values:

C ′
2 :=

{

x ∈ H
∣

∣ (∀k ∈ IR

in, k /∈ IR

c ), xk = ĉk
}

. (16)

3) EVM constraint set: Besides exclusively reserving band-
width, a degree of freedom for peak cancellation can also be
obtained by distorting the data subcarriers. For simplicity, we
define Id = Iin\Ic. The set of signals with distortion on the
data subcarriers bounded by the maximal EVM ǫmax is given
by [13]

C ′
3 :=

{

x ∈ H
∣

∣

∣

∑

k∈IR

d

|xk − ĉk|
2 ≤ (NdP0ǫmax)

2
}

. (17)

4) ACE constraint set: The idea of active constellation
extension is to compensate peaks by allowing boundary points
of a square QAM constellation to be moved farther outside,
thereby increasing the margin to any other constellation point.
While this increases the EVM, the BER can be reduced by this
technique [2]. The set of allowable modifications is denoted
by

C ′
4 :=

⋂

k∈IR

d

Ck
ACE, (18)

where, for x ∈ H,

Ck
ACE =

{

{x | xk = ĉk } , if |ĉk| 6= γ,

{x | sgn(xk − ĉk) = sgn(ĉk)} , otherwise.
(19)

Here, γ is a constant equal to the largest positive real part of
all points of the respective QAM constellation.

5) Combining the constraint sets: As mentioned in
Sect. III-A, the solution to (14) can be found with projection
methods if simple expressions for the projections onto CF and
CT exist. Some potential combinations of sets C ′

i in (14) that
have been used in previous studies include the following:

• S = {1} (iterative clipping and filtering) [6]
• S = {1, 2} (tone reservation) [4]
• S = {1, 3, 4} (ACE + EVM + TR) [13]

Further examples for constraint sets are given in [5].

For all combinations mentioned above, a closed form ex-
pression for the projection onto CF exists. In more detail,
the projection onto C ′

4 in (18) can be obtained by composing
the projections onto the sets in (19) in arbitrary order (e.g.
PC′

4
(x) = P

C

k
|IR

d
|

ACE

· · ·P
C

k1

ACE

(x) for k ∈ IR

d ).

We can show that the projection onto the intersection C ′
4 ∩

C ′
3 of the sets in (17) and (18) is given by

PC′
4
∩C′

3
(x) = PC′

3
PC′

4
(x), (20)

where order of the projections cannot be changed. We omit the
proof due to the page limitation. The projection of a frequency-
domain vector x ∈ H onto the set of signals bounded by θ in
the time domain is given by

PCT
(x) = FPCθ

(

FTx
)

, (21)

where PCθ

(

FTx
)

is the projection of a time-domain signal

FTx onto the set of signals bounded in time, since projections
are defined using the ℓ2-norm (1), which is invariant under the
unitary transformation F. In the following, PF (x) and PT (x)
denote the projections of x onto CF and CT , respectively.

IV. ALGORITHMIC SOLUTIONS

A. Previous Methods

A common method for finding a point within the intersec-
tion of closed convex sets is the projections onto convex sets
(POCS) algorithm [8]. More precisely, to solve (14), the POCS
algorithm produces a sequence (xn)n∈N by

xn+1 = PFPT (xn), x0 ∈ H, (22)

which converges to a point x∗ ∈ CF ∩CT if CF ∩CT 6= ∅. In
the PAPR problem, the POCS algorithm iteratively clips xn

and, subsequently, enforces the frequency-domain constraints
specified by CF . Depending on the choice of CF (see III-B),
(22) yields the ICF algorithm [6], the Fourier projection
algorithm (FPA) [14], or the ACE-POCS algorithm [2].

In the simplified clipping and filtering (SCF) method [15],
the clipping noise PT (x)−x is multiplied by a constant λ in
order to achieve strong PAPR reduction within one iteration.
For λ ∈ (0, 2) and CF = Cin, SCF corresponds to the first
iteration of a relaxed POCS algorithm [8]

xn+1 = PF (xn + λ (PT (xn)− xn)) , (23)

which we refer to as rPOCS in the remainder of this study.

B. Extrapolated Method for TR

In the TR scenario, the constraint set CF is an affine
subspace. We exploit this fact by using the EAPM [16] to
solve (14). It has been shown in [12], that the EAPM converges
considerably faster than the POCS algorithms in (22) and (23)
for affine-convex feasibility problems. Given a point x0 ∈ CF
in an affine subspace CF ⊂ H of a real Hilbert space, and a
closed convex set CT ⊂ H, the EAPM algorithm generates a
sequence (xn)n∈N by

xn+1 = xn + λnKn (PFPT (xn)− xn) , (24)

with λn ∈ (0, 2) and an extrapolation factor

Kn =
‖PT (xn)− xn‖

2

‖PFPT (xn)− xn‖2
. (25)

If CF ∩ CT 6= ∅, convergence to a point x∗ ∈ CF ∩ CT
is guaranteed. As we show in the Appendix, the EAPM is a
particular case of the adaptive projected subgradient method
(APSM) [17], which has also been used in [5] for PAPR
reduction with TR constraints.

C. PAPR Reduction with Arbitrary Constraints

Imposing EVM or ACE constraints results in a non-affine
set CF . In this case, the EAPM algorithm cannot be used
because extrapolation might cause the iterate xn to violate the
frequency-domain constraints. To circumvent this issue, we
propose a PAPR reduction technique for non-affine frequency-
domain constraints based on the GPR approach [7]. Given
two arbitrary closed convex sets CF , CT ⊂ H in a finite
dimensional Hilbert space, the GPR algorithm produces a
sequence (xn)n∈N by

xn+1 = PF
(

xn + λnσ
GPR
n (PFPT (xn)− xn)

)

, (26)

where

σGPR
n =

‖PT (xn)− xn‖
2

〈PFPT (xn)− xn, PT (xn)− xn〉
(27)

is an extrapolation factor established in [18]. As in the case of
the EAPM, convergence to a point x∗ ∈ CF∩CT is guaranteed
if the intersection is non-empty.

If CF is affine, σGPR
n in (27) equals Kn in (25), since

〈PFPT (x)− x, PT (x)− PFPT (x)〉 = 0 for affine subspaces
CF . In this case, the algorithm in (26) is identical to the EAPM
in (24). Therefore, it can be seen as a generalization of the
EAPM for arbitrary closed convex sets CF .

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1826



Consequently, the GPR algorithm can be used for PAPR
reduction with arbitrary combinations of the constraint sets
defined in Sect. III-B. The constraints can be altered on-line,
without the necessity to change the structure of the algorithm.
If the set CF is affine, the performance is equivalent to that
of the EAPM, whereas for non-affine constraints, the method
is still applicable and yields rapid PAPR reduction. A further
property of this approach is that, due to the final unrelaxed
projection onto CF , the iterate xn satisfies the frequency-
domain constraints at each iteration.

Note also that the computational complexity of one iteration
is roughly equal for all algorithms considered in Sect. IV, since
each iteration involves one projection onto CT , and therefore
one IDFT/DFT-pair.

D. Phaseless Pilot Reuse

A recent branch of research in OFDM channel estimation is
directed towards the deployment of phaseless pilots [19], [20],
which allow the receiver to reconstruct the phase shift intro-
duced by the wireless channel without requiring knowledge of
the pilot phases. This channel estimation scheme enables the
transmitter to use the phase of the pilot subcarriers for peak
compensation.

In this scheme, the set of pilot subcarriers is identical
with the set Ic of compensation subcarriers. While in the
various definitions of CF in Sect. III-B there was no constraint
on the compensation subcarriers, simultaneously using them
as phaseless pilots imposes an equality constraint on their
magnitude. This is taken into account by defining the non-
convex set

CP :=
{

x ∈ R
2NL

∣

∣ (∀k ∈ Ic), x2
k + x2

k+NL = pk
}

, (28)

where pk denotes the power of the kth subcarrier. The problem
in (14) is then extended to the non-convex feasibility problem

find
x∈H

x ∈ CF ∩ CT ∩ CP , (29)

which is solved heuristically by terminating each iteration
of the above algorithms by a projection onto CP . Formally,
if xn+1 = T (xn) denotes the update rule of any of the
algorithms in (22), (23), (24) or (26), the equality constraint
on the magnitude of the subcarriers in Ic can be incorporated
by

xn+1 = PCP
T (xn). (30)

Note that, although it is a non-convex set, the projection of x
onto CP is unique if ∀k ∈ Ic: x2

k + x2
k+NL 6= 0.

A very similar non-convex heuristic has been proposed
in [21] for PAPR reduction in pulse amplitude modulated
transform domain communication systems.

E. Practical Aspects: Feasibility, Computational Efficiency

As mentioned above, convergence of the extrapolated meth-
ods in (24) and (26) is only guaranteed if θ is chosen such that
CF ∩ CT 6= ∅. One way of achieving this is to use bisection
search as proposed in [12]. This might however lead to a
slower decrease in PAPR because an appropriate value for
θ has to be found first.

In practice, only a small number of iterations can be com-
puted before transmitting the symbol. It is therefore desirable
to have a good choice for θ from the first iteration. This can
be achieved by running several instances of the algorithm with
different clipping thresholds θ in parallel, and outputting the
result with lowest PAPR after the last iteration. In case the
computational resources are very restricted, it is also possible
to use only one instance of the algorithm in (26) with a
clipping threshold chosen such that the probability of the
problem in (14) being infeasible is sufficiently small. To avoid
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Fig. 1. Complementary PAPR CDF for the first four iterations of relaxed
POCS (λPOCS = 2) and GPR (λGPR = 1.4) with ACE constaints,
N = 2048, L = 4, CR = 7dB, 5% compensation subcarriers,
data subcarriers modulated with QPSK and 16-QAM, respectively, where
EVMmax

QPSK = 15% and EVMmax
QAM = 5%.

the extrapolating algorithm to increase the PAPR in these few
remaining cases, we can compare the extrapolated result to that
without extrapolation, and output the one with lower PAPR.

While the projection methods mentioned above produce
sequences (xn)n∈N that converge to a feasible point x∗,
as n → ∞, the computational resources of the transmitter
often only allow for computing a single iteration. This fact
is taken into account by the SCF algorithm [15], which
computes a single overrelaxed POCS iteration instead of
multiple unrelaxed POCS iterations (ICF). The SCF approach
relies on a fixed overrelaxation/extrapolation parameter λ that
may be larger than two, in which case the algorithm loses its
convergence guarantee. A further disadvantage of SCF is that it
lacks a means of controlling the in-band distortion introduced
by the peak compensation. The BER of the system will
therefore greatly depend on the choice of clipping threshold
θ and relaxation/extrapolation parameter λ. In contrast, the
algorithm in (26) produces a sequence of symbols each of
them satisfying all constraints in the frequency domain. For
example, individual EVM constraints can be specified for
subcarriers conveying constellations of different size. In this
way, the distortion is restricted independently of the choice of
clipping threshold and relaxation parameter. Furthermore, the
extrapolation factor σGPR

n is chosen adaptively, so computing
one iteration according to (26) can reduce the PAPR by an
amount similar to that achieved by the SCF method, while
not losing the convergence guarantee if multiple iterations can
be computed to refine the estimate.

V. SIMULATIONS

In this section, we compare the performance of the algo-
rithms in (23) and (26), in the following denoted as rPOCS
and GPR, respectively. The simulation is performed for ran-
domly generated OFDM symbols with N = 2048 subcarriers.
Negative frequency subcarriers convey QPSK constellation
points, whereas positive frequency subcarriers convey 16-
QAM constellation points. For each symbol, 5% of the
subcarriers are randomly selected as compensation subcarriers.
Data subcarriers are required to satisfy both EVM and ACE
constraints, where EVMmax

QPSK = 15% and EVMmax
QAM = 5%,

respectively. Peaks in the analog signal were approximated
by upsampling by a factor L = 4, and clipped at a clipping
ratio (target PAPR) of CR = 7dB. The relaxation parameter
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Fig. 2. CCDF for the same simulation setup as in Fig. 1, where each
iteration is terminated by an additional projection onto the non-convex set
CP according to (30), with pk = 1 ∀k ∈ Ic.

for the GPR algorithm was set to λGPR = 1.4, although
rapid decrease in PAPR was observed for any λGPR ∈ [1, 2].
As large overrelaxation yielded the fastest PAPR decrease
for the rPOCS method, the relaxation parameter was set to
λPOCS = 2. Note that, by definition, all of the frequency-
domain constraints are satisfied in every iteration.

Fig. 1 shows the complementary cumulative distribution
function (CCDF) of the PAPR for the first four iterations of
both algorithms. It can be seen that, for rPOCS, the rate of
convergence decreases at every iteration. The GPR algorithm
achieves almost 2 dB lower PAPR than rPOCS in the first
iteration, while almost reaching the target PAPR after four
iterations. Fig. 2 shows the CCDF for the same scenario,
for the pilot reuse scheme described in Sect. IV-D. It can
be seen that adding the additional magnitude constraint on
pilot/compensation subcarriers does not decrease the speed of
convergence.

VI. CONCLUSION

In this work, we proposed a PAPR reduction algorithm for
TR based on the EAPM, as well as its generalization for non-
affine frequency-domain constraints, which is based on the
GPR approach. In addition, we proposed a heuristic extension
for non-convex constraints that allows reusing the phase of
pilot subcarriers for phaseless channel estimation to reduce the
PAPR. Simulations showed that the proposed methods were
able to decrease greatly the PAPR with very few iterations.

APPENDIX

In the following, we show that the EAPM [16] is a particular
case of the embedded constraint version of the APSM [17,
Example 5], which produces a sequence (xn)n∈N by

xn+1 = xn − λn

Θn(xn)

‖PM (Θ′(xn))‖2
PM (Θ′(xn)), (31)

where M ⊂ H = R
2NL is a linear subspace such that CF =

M + v. While the cost function Θn can be changed in each
iteration, we choose a fixed cost function (∀n ∈ N) Θn(x) =
‖x− PCT

(x)‖, a subgradient of which is given by

Θ′
n(x) =

x−PCT
(x)

‖x−PCT
(x)‖

∈ ∂Θn(x),

where CT ⊂ H is a closed convex set. Because CF is an
affine subspace, it holds that [8, p. 155]

(

∃A ∈ R
2NL×2NL

)

, (∃b ∈ H) : PCF
(x) = Ax+ b,

where b = PCF
(0) = v. Thus

PM (Θ′
n(xn)) = PCF

(Θ′
n(xn))− b

= A
(xn − PCT

(xn))

‖xn − PCT
(xn)‖

=
Axn + b− (APCT

(xn) + b)

‖xn − PCT
(xn)‖

=
PCF

(xn)− PCF
PCT

(xn)

‖xn − PCT
(xn)‖

=
xn − PCF

PCT
(xn)

‖xn − PCT
(xn)‖

,

where the last equality follows from the fact that (∀n ∈ N)
xn ∈ CF . Substituting in (31) yields

xn+1 = xn + λn
‖xn−PCT

(xn)‖2

‖xn−PCF
PCT

(xn)‖2 (PCF
PCT

(xn)− xn) ,

which is the definition of the EAPM algorithm in (24).
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