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Abstract—In this paper, we use a Siamese Neural Network based
hashing method for generating binary codes with certain properties.
The training architecture takes a pair of images as input. The loss
function trains the network so that similar images are mapped to similar
binary codes and dissimilar images to different binary codes. We add
additional constraints in form of loss functions that enforce certain
properties on the binary codes. The main motivation of incorporating the
first constraint is maximization of entropy by generating binary codes
with the same number of 1s and 0s. The second constraint minimizes
the mutual information between binary codes by generating orthogonal
binary codes for dissimilar images. For this, we introduce orthogonality
criterion for binary codes consisting of the binary values 0 and 1.
Furthermore, we evaluate the properties such as mutual information and
entropy of the binary codes generated with the additional constraints. We
also analyze the influence of different bit sizes on those properties. The
retrieval performance is evaluated by measuring Mean Average Precision
(MAP) values and the results are compared with other state-of-the-art
approaches.

Index Terms—Siamese Neural Networks, Binary Hashing, Image Re-
trieval, Code Property Training, Information Theoretic Criteria.

1. INTRODUCTION

Thousands of images are uploaded to the internet every day. In
order to effectively search through the vast number of images, fast
image retrieval is necessary. One approach for fast image retrieval is
hashing, which maps the high-dimensional data onto a compact bi-
nary code [1]. The performance of hashing methods heavily depends
on the chosen hashing function. With the development of Convolu-
tional Neural Networks (CNNs), CNN-based hashing methods have
gained popularity. In the recent years, CNNs achieved best results in
several computer vision tasks such as image classification [2].

A. Related work

Hashing has become an important step for making efficient storage
and retrieval of images and videos. Already existing hashing meth-
ods are divided into mainly data dependent and data independent
approaches. Locality Sensitive Hashing (LSH) [3] uses random linear
projections to generate optimum binary codes. Super-bit LSH [4] and
non-metric LSH [5] are two popular recently proposed variants. Data
dependent methods effectively utilize the training data while learning
the binary codes and are classified into supervised and unsupervised
approaches. Iterative quantization (ITQ) [6] is a popular unsupervised
approach. Popular supervised models are Supervised Hashing with
kernels [7], Order Preserving Hashing [8], and Supervised Discrete
Hashing [9] which uses the label information of training data into
account. Convolutional Neural Network Hashing (CNNH) [10] is
one of the initial attempt to include deep learning for hashing.
[11] proposes a triplet ranking based approach for hashing. Another
approach of binary hashing is using a Siamese Neural Network (SNN)
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[12] which learns the similarity between the images. This means
similar images are mapped to similar binary codes and dissimilar
images to distinguishable binary codes. This similarity preserving
characteristic is essential for image retrieval. When a retrieval system
receives a query image, it calculates the corresponding binary code.
Then it searches through the database for similar images. The
similarity of images can simply be determined by calculating the
Hamming distance of the binary codes. SNN performs well in tasks
such as similarity comparison of images [13]. In addition to the
similarity preserving constraint of the binary code, more constraints
are often enforced upon the binary codes in order to generate the
binary codes with some additional properties. These include the
maximization of the entropy [14], [15] or generating binary codes
that have independent bits as proposed in [16] and [17].

In this paper, we present a supervised SNN-based hashing method,
which maps images onto compact binary codes. We added 2 con-
straints to the network in order to improve the properties of the
binary codes. The first constraint maximizes the entropy of the bits
by generating balanced binary codes that have the same number of
1s and Os as proposed by [15]. The second constraint is responsible
for generating balanced and orthogonal binary codes. For this, we
introduced a novel approach for the orthogonality of binary codes
consisting of the values 0 and 1. This constraint minimizes the
mutual information between the bits and generates binary codes with
independent bits.

Another major contribution of our work is the optimum selection of
margin m for the hinge embedding loss which is a criterion used for
training SNN for learning image similarity. Furthermore, there has not
been much research aimed at measuring the actual entropy and mutual
information of the binary codes to the best of our knowledge. Unlike
most other papers that added similar constraints to generate binary
codes, we evaluated the actual influence of the constraints on the
properties of the binary codes with variation of the bit sizes. The rest
of the paper is organized as follows: Section II discusses the neural
network architecture and loss criteria. In section III, experimental
results are analyzed. Concluding remarks are drawn in section IV.

II. NETWORK ARCHITECTURE AND LOSS FUNCTIONS

The SNN used for training is shown in Fig. 1. For each training
step, the image pairs are generated first. The batch size n is set
to 64, and thus 64 images are selected out of the training dataset.
These images are called anchor images. For each anchor image one
image belonging to the same class (positive pair) and one belonging
to a different class (negative pair) is selected. The details of online
generation of training pairs is explained in our previous work [18].
The sub-networks of SNN consists of CNNs followed by a sigmoid
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Fig. 1: Siamese neural network architecture.

layer. The CNNs extract features from the images. The sigmoid layer
squashes the elements of the feature vectors in the range of {0,1}.
As the network is trained, the elements assume values close to 0 or
1. b is the number of bits of the binary vectors. In each training step,
the network first receives the positive pair and then the negative pair.
For each case, the loss is calculated and the weights are updated
separately. The network is trained using stochastic gradient descent.
The different training criteria are discussed in the subsequent sections.

A. Hinge Embedding Criterion

The hinge embedding criterion (HE) is the criterion used to train
the network so that each class gets its own unique binary code.
It receives the distance vector (d) between image pairs and the
corresponding labels y indicating similar or dissimilar pairs. This loss
function minimizes the distance between similar pairs and increase
the distance between dissimilar pairs such that it is higher than the
margin m. The loss is calculated as follows:

Lhe(d7 y) = (1 - y)LSim(d) + yLdis(d).

Label y = 1 indicates dissimilar pairs and y = 0 corresponds to
similar pairs. Lsin, is the function which calculates the loss of similar

n
images and is given by 7% >~ d;. The loss for dissimilar pairs is the
i=1
average value by which the distances are smaller than the margin m
n
and is defined as £ >~ max (0, m — d;). The margin m defines how

i=1
big the Euclidean distance between the feature vectors of negative
images should be.

B. Balance Criterion

The first additional criterion added to the loss function is called
balance criterion (B). The objective of the criterion is to achieve the
same number of Os and 1s in the generated binary codes and thus to
maximize the entropy. Codes which fulfill this condition are called
balanced codes. The corresponding loss function is:

Liatance(X,y) =y Y _ (15 — 0.5)°, M

i=1

The output of the sub-network (one branch of the siamese archi-

tecture) which receives the anchor images is X € R"*°. The

average value of the bits of one binary code x; is represented by
b

Uy = % >~ xs5. As the codes become balanced, up will become 0.5
j=1

for all codes resulting in minimizing Lpalance. In equation (1) the

label y is also present. The network receives the anchor images twice

in each training step. At first it is received along with the positive

pair and then with the negative pair. In order to let the network be
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trained only once with each anchor image with regard to balance, the
label y is included. The gradient of Lpalance With respect to X is:

vaalance,l (‘El ; y)

VLbalance,Q (:BQ, y)
VLbalance(X7 y) = N

vl/balance,n(a’ru y)
V Lvalance,i (€i,y) € R'*? is the gradient of the loss function with
respect to one binary code x; and is:

2
VLbalance,i(mi,y) = yg [/’LZN b, ) Mb} .

The prerequisite for this criterion is, that the codes have an even
number of bits. Otherwise balanced codes are not achievable.

C. Orthogonality Criterion

The orthogonality criterion (O) is the second addition to the loss
function. This criterion minimizes the mutual information between
the bits of the binary codes and thus achieve independence of the
bits. In order to achieve this objective, the approach is to generate
binary codes that are orthogonal to each other and therefore are
linearly independent. [16] proposes a method for balancing the codes
in {1, —1} domain. We introduce the novel orthogonality criterion
which trains the network to generate orthogonal codes in {1,0}
domain directly. Let the matrix X contains n binary vectors. The
binary vectors are orthogonal if the following condition is met:

T
XX —-C=0,
where
b b b
2 1 7
b b b
4 2 4
c=|. . )
b b b
4 4 2

The diagonal entries of the matrix C' which are the scalar products
of the vectors with themselves must be g. This is because the scalar
product of a binary vector with itself is equal to the sum of ones in
the vector and since balanced codes are desired, each code should
contain exactly g ones. For balanced codes to be orthogonal, the
non-diagonal entries have to be %. For this desired property of the
binary codes, a criterion which trains the binary vectors is formulated
as given below. The approach is to use the binary vectors generated

out of the anchor images X and minimize the loss function:

min Lorthogonal (X7 y) =y HXXT — CH2 .
X eRnxb

The label y is used again to ensure that the network is only trained
once with each anchor image.

In order to be able to generate balanced orthogonal binary codes, it
is important to select b which is divisible by 4. If the number of bits
b is not divisible by 4, g would not be an integer and the network
will not be trainable. For testing purposes we generate a matrix
B containing one binary code for each class. These binary codes
are the mean binary codes of all images for each class. 10 binary
orthogonal vectors are desired for a database with 10 different classes.
A necessary condition is that the vectors are linearly independent.
The 10 binary codes in B are linearly independent, if and only if
the rank of B is 10. With 10 bits or more it is possible to find 10
balanced binary codes so that the matrix B has a rank of 10. If both
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requirements are merged together, the resulting number of bits results
to b = 12 or more. The final loss function is defined as:

LOSS = )\1 Lhe(d7 y) + AQLbalance(X7 y) + )\SLorthogonal(Xy y)
where As represent the corresponding regularisers.

D. Selection of margin m

The objective of the orthogonality criterion is to generate binary
orthogonal codes. As explained in section II-C, the scalar product
between all codes must be % This condition can also be formulated
differently. Whe;l comparing two binary codes, % bits should be

identical while 5 must be inverted. This means that the Hamming

distance between all codes should be equal to % The margin m of
the HE criterion is therefore set to \/g to support the orthogonality
criterion. We use the square root here because we consider the
Euclidean distance during the training. The binary codes are only
generated after passing the network output through the sigmoid layer
followed by quantization at 0.5.

III. EXPERIMENTAL RESULTS

We have used CIFAR-10 [19] and MNIST [20] datasets for our
experiments. For the evaluation of the properties we have trained 20
networks using the image pairs from CIFAR-10 dataset with different
criteria and averaged the results. The networks were trained for 150
epochs with a learning rate of 0.01, and batch size of 64. The margin
m was selected as explained in II-D. The GPU used for training was
GeForce GTX Titan X. Fig. 2 shows the training curves obtained
while generating binary codes using all 3 criteria for a bit size of
12. Fig. 2 (a), (b), and (c) shows the training error for dissimilar
pairs, similar pairs, and the total training error respectively. Fig. 2
(d) shows how the loss changes as the distance between the similar
image features changes. As the training proceeds, the loss decreases
and the distance between the similar image features also converges

to 0. For dissimilar pairs for the case of b = 12, the margin is

12— 9,449 and as the training proceeds the loss decreases and

2
the distance between the dissimilar pairs moves to the selected margin
of 2.449 as shown in Fig. 2 (e). From Fig. 2 (f), we could observe
that the distance between dissimilar pairs goes beyond the margin
and distance between the similar pairs converge towards zero as the

training proceeds.

A. Evaluation of entropy and mutual information

The generated binary codes are to be evaluated with respect to
entropy, mutual information, and independence of bits. The entropy
of the bit ¢ in position ¢ is defined as H(c;). In order to calculate
the mutual information between 2 bits, the joint entropy of those 2
bits is needed. The joint entropy of the bits in position ¢ and j is
calculated as follows:

1 1
H(ci ) ==Y > ples = k,c; =1)log,(p(ei = k,c; = 1))
k=0 1=0
The mutual information I(c;; ¢;) is calculated as: H(c;) + H(c;) —
H(c;,cj). The influence of the different criteria on entropy is
evaluated first. The entropy of the bits is highest for a network
trained with HE+B criterion than one trained with HE (Fig. 3 (a)).
The average entropies for HE and HE+B are almost equal. This
implies, that the bits carry approximately the same information in
both cases. However, it shows that the bits are more balanced for
balanced codes. The average entropy value of HE+B+O is in the
middle of the other 2 values for 8 bits. For increasing bit sizes
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Fig. 2: (a) Training error for dissimilar pairs, (b) training error for similar pairs, (c)
total training error, (d) distance between dissimilar pairs vs the corresponding loss, (e)
distance between similar pairs vs the corresponding loss, (f) variation of distance between
similar pairs (positive) and the dissimilar pairs (negative) as the training proceeds. The
bit length used here is b = 12.
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Fig. 3: (a) Variation of entropy, and (b) variation of mutual information with bit sizes.

this still holds true for HE and HE+B, as shown in Fig. 3 (a). The
only difference that has to be noted is, that the average entropy for
HE+B+O decreases and is on average about 0.005 lower compared
to HE and HE+B. Now the effect of different criteria on mutual
information is evaluated. As shown in Fig. 3 (b) training the network
with the additional orthogonality criterion results in smaller mutual
information of the bits. A mutual information close to O implies,
that 2 bits share no information and are thus totally independent.
This is the most desired property the codes should have. Therefore,
codes generated with HE+B+O have more bits that are independent.
Fig. 3 (b) illustrates how the average mutual information changes,
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Fig. 4: Histogram of Hamming distances for networks trained with (a) hinge em-
bedding, (b) hinge embedding and balance, (c) all 3 criteria. The network was trained
to generate codes for a bit length of 8 (Hamming distance of 4). The best codes were
generated when network is trained using all 3 criteria, as seen from the peak in histogram
at 4.

when more bits are used to represent the binary codes. The mutual
information continues to be lowest with increasing bit sizes when the
networks are trained using the orthogonality criteria.

B. Evaluation of Hamming distance

To get an overview of the distances, the binary codes of the
10 classes are compared within each network. For each matrix B,
(120) = 45 Hamming distances are calculated. Fig. 4 (a) shows the
900 Hamming distances occurring for the 20 networks trained with
HE for 8 bits. The desired Hamming distance the network is trained
for is % = 4. Although the average Hamming distance is 4.38,
many binary codes differ by less than 4 bits. One network actually
generates 2 binary codes that are identical, even though they belong
to different classes. This is undesired behavior, because the images
of those classes can not be distinguished.

For networks trained with HE+B (Fig. 4 (b)) a peak can be seen at a
Hamming distance of 4 and less Hamming distances are smaller than
4. There are 11 Hamming distances that are 0, meaning that more
binary codes belonging to different classes are identical. Networks
trained with HE+B+O (Fig. 4 (c)) provides the best results. It is
evident from the peak in the histogram at 4. This is because the
orthogonality criterion additionally trains the network to generate
codes that differ by exactly 4 bits.

C. Evaluation of orthogonality and linear independence

The main objective of the orthogonality criterion is to reduce the
mutual information. Balanced codes are orthogonal to each other if
their scalar product is equal to Z. If all codes are orthogonal to
each other, all 45 scalar products should be %. For the 8 bit case,
the scalar products should be equal to 2. In Fig. 5 (a) histogram
of the scalar products for codes trained with the balance criterion
for 8 bits is shown. The number of scalar products that are 2 is
higher proving that many binary codes are already orthogonal to
each other. However, 54.9% of the scalar products differ from 2. The
reason is that the Hamming distance between the codes generated is

not always 4 for networks trained with HE+B compared to codes
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Fig. 5: (a) Scalar product of binary vectors for networks trained with hinge embedding
and balance, (b) for networks trained with all 3 criteria for 8 bits. (c) Scalar products
which are % for different bit sizes. (d) Rank of B for different bit sizes.

generated with HE+B+O (Fig. 4 (b), (c)). There are a lot more
distances that are bigger than 4, because the HE criterion accepts
all codes with an Euclidean distance higher than the margin. Fig. 5
(b) shows the histogram of the scalar products for HE+B+O. The
histogram shows that many more binary codes are orthogonal to each
other. Furthermore 68 out of 900 scalar products are 0, meaning that
the corresponding codes are parallel and are linearly dependent.

The scalar product for balanced codes is only % if and only if the
Hamming distance of the codes is g. Thus we could conclude that
the orthogonality for balanced codes is correlated to the Hamming
distance. Therefore, networks trained with the 3 criteria combined
generate the best orthogonal codes. Fig. 5 (c) shows the number
of scalar products that are % for different bit sizes. As readily
apparent, the number of binary codes, that are orthogonal to each
other, is higher for HE+B+O for all bit combinations. This number
is decreasing for higher bit sizes.

Finally, a brief overview about the rank of the matrices B
generated with the different criteria is given. The rank specifies how
many binary codes in B are linearly independent. Fig. 5 (d) shows the
rank for different number of bits. In total, the rank rises for every case.
Networks trained with HE+B always have the lowest rank. For 12
bits or higher, networks trained with HE+B+O outperform networks
trained with HE. For 16 bits, the average rank is already 9.25. For
32 bits, the average rank for HE+B+O increases further and reaches
a value of 9.9, which is really close to the upper limit of 10 for a 10
class problem.

D. Evaluation of retrieval results

TABLE I: MAP values for CIFAR-10 in % compared with other state-of-the-art
approaches.

No. of bits 16 24 32 48
ours 90.37 90.44 90.39 90.32
DTSH [21] 91.5 92.3 92.5 92.6
DPSH [22] 76.3 78.1 79.5 80.7
DRSCH [23] 61.5 62.2 62.9 63.1
DSRH [24] 60.8 61.1 61.7 61.8
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In order to evaluate the retrieval results, we measured the Mean
Average Precision (MAP) values. The MAP values are evaluated for
CIFAR-10 and MNIST datasets. To make it consistent with the state-
of-the-art algorithms, we have measured the MAP values for bit sizes
of 16, 24, 32, and 48 bits. The test images were considered as the
query images making 1000 query images per class. The query was
made on the training dataset. The MAP measurements were done
at 1000 meaning first 1000 retrieved images were considered for
MAP calculation. The MAP values are summarized in the Table I
for CIFAR-10 and Table II for MNIST dataset. The MAP values
are for networks trained with all 3 criteria which generates the
optimal binary codes. Increase in the number of bits does not bring
much improvement in MAP values. For MNIST dataset, binary codes
generated using all 3 criteria gives the best MAP for bit size of 16
and does not show much improvement with increasing bit sizes. For
CIFAR-10 the MAP value is around 90% slightly lower than the
values reported by [21].

TABLE II: MAP values for MNIST in % compared with other state-of-the-art
approaches.

No. of bits 16 24 32 48

97.06 97.02 96.49 97.28
9692 9737 97.88 9791
9648  96.69 97.21 9753

ours
DRSCH [23]
DSRH [24]

IV. CONCLUSIONS

In this paper we have trained a SNN model for generating binary
codes with properties such as balance and orthogonality. We intro-
duced the novel orthogonality constraint to generate codes directly in
{1, 0} domain. The sigmoid layer squashes the neural network output
to 1 and O and are then finally quantized to generate actual binary
codes. Another contribution of our work is the optimum selection of
margin m for the hinge embedding criteria. We also evaluated the
properties of the binary codes generated by measuring the Hamming
distances, entropy, mutual information and rank of the binary codes.
To conclude, the networks trained with all 3 criteria together showed
promising results especially for smaller number of bits. Properties of
binary codes are becoming worse for higher number of bits. The main
reason is the general increase in difficulty when dealing with higher
bit sizes because more bits have to adapt to the imposed constraints.
The second reason is that the A3 for the orthogonality criterion has
to be reduced for higher bit sizes. Otherwise, the feature vectors fail
to assume values close to 0 or 1. Eventually, this could be achieved
by initially training the network without the orthogonality criterion
and addition of the orthogonality criterion later. After few epochs,
the vectors will already be a little bit defined and the orthogonality
criterion will only have to do the fine tuning. This could prevent the
criterion from completely dominating the initial training phase, while
still greatly influencing the training of the network later on.

Another major conclusion is that the scalar product for balanced
codes is only % only when the Hamming distance of the codes is %
showing direct correlation between orthogonality and balance. Also
from the MAP values and evaluation of properties, it is clear that
an increase in bit size is not always required to have distinguishable
binary codes with unique properties. Ideally using our orthogonality
criterion, for a 10 class problem, 12 bits are sufficient to generate
binary codes which are independent. Extension of experiments to
bigger datasets and selection of optimum number of bits based on
the measured properties of the binary codes are some of the future
research directions.
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