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Abstract—We show how to robustify the Consensus + Inno-
vations Matrix Sequential Probability Ratio Test against distri-
butional uncertainties using robust estimators. Furthermore, we
propose four distributed sequential tests for multiple hypotheses
based on the median, the Hodges-Lehmann estimator, the M-
estimator, and the sample myriad. Simulations verify the com-
petitive performance of the proposed approach in comparison to
an alternative method based on least favorable densities.

Index Terms—sequential detection, multiple hypothesis testing,
distributed detection, robustness, distributional uncertainties

I. INTRODUCTION

Many modern real-time applications such as intelligent

traffic control, smart homes, or video surveillance require

sequential detectors that work reliably in distributed setups

[1]. The goal is to make a decision for one out of two or

more hypotheses based on as few measurements as possible.

We consider the extension of distributed sequential detectors

to multiple hypotheses. Moreover, we are interested in robust

solutions that are insensitive to distributional uncertainties—

a common phenomenon in real-life applications that can be

due to outlying measurements, insufficient knowledge about

the observed process, or model mismatches.

We show how to robustify the Consensus + Innovations

Matrix Sequential Probability Ratio Test (CIMSPRT) from

[2] by leveraging neighborhood communication along with

robust estimators. We propose four algorithms of this kind

based on the median, the Hodges-Lehmann estimator [3], the

M-estimator [4], [5], and the sample myriad [6]. Finally, we

compare the performance of the proposed M-CIMSPRT to the

LFD-CIMSPRT from [2], which uses least favorable densities

for robustification.

The paper is structured as follows. Section II formulates the

problem of multiple hypothesis testing in Gaussian and non-

Gaussian environments. In Sections III and IV, we review the

state-of-the-art in sequential binary, and sequential multiple

hypothesis testing in a distributed sensor network. Section V

details the concept of robustifying the CIMSPRT using robust

estimators in the test statistic update. In Section VI, we present

selected results comparing the proposed M-CIMSPRT with

the alternative LFD-CIMSPRT. Conclusions are drawn in

Section VII.

II. PROBLEM FORMULATION

Let (Yk(1), . . . , Yk(t)), k = 1, ..., N be sequences of in-

dependent and identically distributed random variables. Their

common distribution P admits a continuous density p. We

consider a network of N agents modeled as an undirected

graph G = (V , E) with V and E denoting the sets of agents

and edges. The closed neighborhood of agent k is given by

Nk = {l ∈ V | (k, l) ∈ E} ∪ {k}. A convenient way to define

the neighborhood is by considering a communication radius

dmax.

When testing multiple simple hypotheses in a distributed

setup, each agent decides between M > 1 hypotheses

Hm : P = Pm, m = 1, . . . ,M.

We consider the following two test scenarios where each agent

k should make a decision based on its measurement yk(t) at

time instant t as well as information from its neighbors:

1) Scenario 1: Shift-in-Mean Test

The distributions Pm have different means µm. As-

suming zero-mean Gaussian measurement noise with

variance σ2, the hypotheses become

Hm : Yk(t) ∼ N (µm, σ
2), m = 1, . . . ,M. (1)

2) Scenario 2: Shift-in-Variance Test

Pm differ in variance σ2
m. Hence, node k tests between

Hm : Yk(t) ∼ N (µ, σ2
m), m = 1, . . . ,M. (2)

In practice, there often is an uncertainty in the distribution of

the data, causing the assumption of Gaussianity to be violated.

Our goal is to develop sequential detectors that are robust and

do not break down in the face of outliers. To this end, we

consider M disjoint sets of feasible distributions Pm such that

Hm : P ∈ Pm, m = 1, . . . ,M.

Outliers can be modeled using the ε-contamination model, i.e.,

[4], [5]

P = (1− ε)P ◦ + εH, (3)

where P ◦ denotes the nominal distribution, 0 ≤ ε < 0.5
is the contamination coefficient, and H is the contaminating

distribution.
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III. DISTRIBUTED SEQUENTIAL BINARY HYPOTHESIS

TESTING

A. The Sequential Probability Ratio Test (SPRT)

In the 1940s, Wald [7] proposed the single-sensor binary

Sequential Probability Ratio Test (SPRT), where at each time

step t a test statistic S(t) is calculated according to

S(t) =

t
∑

i=1

log

(

p1(y(i))

p0(y(i))

)

.

Subsequently, S(t) is compared to a lower and an upper

threshold γl = log β
1−α and γu = log 1−β

α
, which are derived

based on pre-specified bounds on the probabilities of false

alarm α and misdetection β. The test stops as soon as one of

the thresholds is crossed, and a decision is made according to

if S(t) ≥ γu : accept H1

if S(t) ≤ γl : accept H0

else : continue sampling.

B. The Consensus + Innovations SPRT (CISPRT)

The Consensus + Innovations Sequential Probability Ratio

Test (CISPRT) [8] is a distributed extension of the SPRT,

which we generalized in [9]–[11] to be applicable in shift-in-

mean as well as shift-in-variance tests. In the CISPRT, each

node k obtains its log-likelihoood ratio (LLR) ηk(t) as

ηk(t) = log

(

p1(yk(t))

p0(yk(t))

)

.

Its test statistic Sk(t) is calculated and updated using neighbor

information as

Sk(t) =
∑

l∈Nk

wklSl(t− 1) +
∑

l∈Nk

wklηl(t),

where wkl denote combination weights that are collected in

matrix W . For simplicity we set

wkl =

{

1
|Nk|

if l ∈ Nk

0 otherwise.

Sk(t) is compared to an upper and a lower threshold given by

[9]

γuCI ≥
4

7

c σ2
η,0

µη,0

(

log
(α

2

)

+ log

(

1− e
− 1

2

µ2
η,0

cσ2
η,0

))

(4)

γlCI ≤
4

7

c σ2
η,1

µη,1

(

log

(

β

2

)

+ log

(

1− e
− 1

2

µ2
η,1

cσ2
η,1

))

. (5)

Here, µη,0, σ
2
η,0 and µη,1, σ

2
η,1 denote the respective mean and

variance of the LLR under H0 and H1. The constant c =
r2+ 1

N
depends only on the network, with r = ‖W − 1

N
11

⊤‖
representing the network information flow. Furthermore, ‖ · ‖
is the Euclidean norm and 1 is the one-vector of length N .

Node k makes a decision according to

if Sk(t) ≥ γuCI : accept H1

if Sk(t) ≤ γlCI : accept H0

else : continue sampling.

IV. SEQUENTIAL MULTIPLE HYPOTHESIS TESTING IN A

DISTRIBUTED SENSOR NETWORK

A. The Matrix SPRT (MSPRT)

The single-sensor SPRT can be extended to multiple hy-

potheses by computing the pairwise test statistics

Smn(t) =

t
∑

i=1

log

(

pm(y(i))

pn(y(i))

)

for all possible pairs Hm,Hn with m,n = 1, . . . ,M [1, Chap-

ter 4]. In this Matrix SPRT (MSPRT), all Smn(t) are collected

in a matrix S and an entrywise comparison to threshold

matrix γu with entries γumn = log
(

1−βmn

αmn

)

≈ log
(

1
αmn

)

is

performed. Note that the bounds on the probabilities of false

alarm and misdetection of the pairwise hypothesis test are

denoted by αmn and βmn.

In an acceptance test, we stop and decide for Hm once all

entries in the mth row of S—excluding the (m,m)th entry—

cross the corresponding thresholds, i.e.,

if there exists m ∈ {1, . . . ,M} such that

Smn(t) ≥ γumn ∀ n ∈ {1, . . . ,M} \ {m} : accept Hm

else : continue sampling.

This corresponds to performing M(M−1) one-sided pairwise

tests in parallel. Inverting the LLRs and comparing to lower

thresholds γlmn would lead to the alternative rejection test.

B. The Consensus + Innovations MSPRT (CIMSPRT)

In [2], we proposed the Consensus + Innovations MSPRT

(CIMSPRT) as a fusion of the CISPRT and the MSPRT. Here,

each node k computes the LLRs for all pairs Hm,Hn as

ηkmn(t) = log

(

pm(yk(t))

pn(yk(t))

)

. (6)

Pairwise test statistics Skmn(t) are calculated for all pairs as

Skmn(t) =
∑

l∈Nk

wklS
l
mn(t− 1) +

∑

l∈Nk

wklη
l
mn(t). (7)

An acceptance test is performed at each node according to

if there exists m ∈ {1, . . . ,M} such that

Skmn(t) ≥ γumn ∀ n ∈ {1, . . . ,M} \ {m} : accept Hm

else : continue sampling,

with γumn denoting the upper threshold for the hypothesis pair

Hm,Hn, which is calculated using (5).

V. ROBUSTIFYING THE CIMSPRT

In [9], [11], we showed how to leverage neighborhood

information together with robust estimators to robustify the

binary CISPRT. In the sequel, we extend this method to the

CIMSPRT for multiple hypotheses.
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A. Reformulating the Update Equation

We reformulate (7) as

Skmn(t) =
∑

l∈Nk

wklS
l
mn(t− 1) + η̂kmn(t), (8)

where η̂kmn(t) denotes the weighted average of the collective

innovations of node k and its neighborhood for the hypothesis

pair Hm,Hn at time instant t. Without any a priori knowledge

on the reliability of the neighbors, it is common to weight

the information of all nodes equally. η̂k(t) then becomes the

sample mean with

η̂k,mean
mn (t) =

1

|Nk|

∑

l∈Nk

ηlmn(t), (9)

which is a non-robust estimator [5]. Due to the recursive nature

of the update equation, using a robust estimator for η̂kmn(t)
automatically robustifies the entire test statistic update.

In contrast to the alternative approach from [2], which

is based on the concept of least favorable densities, the

proposed robustification method censors the innovations at a

later stage. More precisely, the use of a robust estimator in

(7) limits the effect of outliers in the innovations. Since the

log-likelihood ratios computed by each node stay intact, the

original thresholds and decision rules of the CIMSPRT remain

valid.

B. Robust Estimators for the CIMSPRT

One of the simplest robust alternatives to the sample mean

is the median η̂k,median
mn (t), which is calculated as

η̂k,median
mn (t) =

{

ηkmn(
|Nk|
2 ) , |Nk| even

1
2

(

ηkmn(
|Nk|
2 ) + ηkmn(

|Nk|
2 + 1)

)

, |Nk| odd

(10)

Here, vector ηkmn contains the log-likelihood ratios of node k

and its neighbors for the hypothesis pair Hm,Hn in ascending

order. Replacing η̂k(t) in (7) with η̂k,median
mn (t) leads to the

Median-CIMSPRT.

In [9], we showed that the median is not suitable for

shift-in-variance tests due to the skewness contained in the

LLR’s probability density function. An alternative is to use

the Hodges-Lehmann estimator, which calculates the median

of the sample mean of all possible combinations of data points

[3]. For the problem at hand, we obtain

η̂k,HL
mn (t) = median

(

ηk,HL
mn

)

with ηk,HL
mn =

[

mean
(

ηimn(t), η
j
mn(t)

)]

∀ i, j ∈ Nk, i ≤ j.

(11)

Note that the median is calculated as in (10) and the mean as

in (9). Using η̂k,HL
mn (t) in (7) yields the HL-CIMSPRT.

An important class of robust estimators are M-estimators

[4], [5]. We obtain the M-CIMSPRT by replacing η̂k(t) in

(7) with an M-estimate. This yields a weighted average, with

weights

W (x) =

{

ψ(x)
x

, x 6= 0

ψ′(0) , x = 0
,

where ψ(x) is a score function and ψ′(x) its first derivative. A

popular choice of ψ(x) was introduced by Huber [4] as

ψHub(x) =

{

x , |x| ≤ cHub

cHubsign(x) , |x| > cHub

,

for some positive constant cHub. The M-estimate η̂k,Mmn (t) is

obtained by iterating

wkmn(t, i) =W

(

ηkmn(t)− η̂k,Mmn (t, i)

σ̂(ηkmn)

)

η̂k,Mmn (t, i+ 1) =

∑

l∈Nk
wlmn(i)η

l
mn(t, i)

∑

l∈Nk
wlmn(i)

(12)

until
|η̂k,M

mn(t,i+1)−η̂k,M
mn(t,i)|

σ̂(ηk
mn)

< ǫ for a small, posi-

tive constant ǫ. We initialize the algorithm by setting

η̂k,Mmn (t, 0) = η̂k,median
mn (t). For the scale estimation, we

use the normalized median standard deviation σ̂mad(η
k
mn) =

1.483 · median
(

|ηkmn − η̂k,median
mn (t)|

)

.

Finally, we consider the sample myriad [6]

η̂k,myriad
mn (t) = argmin

η

∏

l∈Nk

[

q2 +
(

ηlmn(t)− η
)2
]

(13)

where commonly q = σ̂mad(η
k
mn). Using η̂

k,myriad
mn (t) in (7)

results in the Myriad-CIMSPRT.

VI. SIMULATIONS

We consider two network sizes, N ∈ {15, 30}, and connec-

tivities, dmax ∈ {0.3, 0.6}. The networks are shown in Fig. 1.

We perform a shift-in-mean
(

µm ∈ {−2,−1, 1, 2}, σ2 = 4
)

and a shift-in-variance test
(

σ2
m + σ2 ∈ {1, 2, 4, 16}

)

. The

required probability of false alarm is fixed to αmn = 0.01,

and all hypotheses are contaminated with hm = N (0, 81). ε
is swept over [0, 0.3]. For each hypothesis 1 000 Monte Carlo

runs are performed. We consider the ratio of correct detection

and the average stopping time (AST) as performance metrics.

Due to space constraints, we only show results for the M-

CIMSRT (chub = 1.8), which were the best in all test cases,

and compare them with those of the LFD-CIMSPRT from [2].

A. Simulation Results

Rows 1 and 2 in Fig. 2 show the results for the shift-in-mean

test using the M-CIMSRT under H1, . . . ,H4. Rows 3 and

4 pertain to the LFD-CIMSPRT. While the LFD-CIMSPRT

delivers perfect detection results under all hypotheses inde-

pendently of the contamination ratio, this comes at the cost

of a much higher AST. The M-CIMSPRT obtains a constant

ratio of correct detection of 1 only for H2 and H3. In this

case, the AST actually drops with increasing contamination

since—for the two hypotheses in the middle—outliers help

in making a correct decision. Under H1 and H4, about 25-

30 % contamination can be tolerated. Here, the AST increases

with contamination and spikes just before the performance

drop. Network size and connectivity have the same effect on

both algorithms, with the connectivity having a large, and the
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Fig. 1. Sample networks obtained by randomly generating simple, connected and undirected graphs.
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Fig. 2. Simulations results for a shift-in-mean test using the M-CIMSPRT (row 1 and 2) and the LFD-CIMSPRT (row 3 and 4) under H1, ...H4 (left to
right). The upper row always depicts the ratio of correct detection while the lower row shows the average stopping time.

network size a small impact on the AST. For the M-CIMSRT,

a higher connectivity also slightly increases the amount of

tolerable contamination.

Figure 3 shows the results for the shift-in-variance test. Both

algorithms perform pretty similar with the tolerable amount

of contamination depending on the hypothesis, i.e., on the

assumed nominal variance. For the M-CIMSRT, we observe

an additional dependency on the network properties with the

connectivity having a larger impact than the network size.

Under H1, H2, and H3, the AST of both algorithms increases

with contamination. H4 is the easiest test case, where outliers

help to make a correct decision. Hence, the AST decreases
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Fig. 3. Simulations results for a shift-in-variance test using the M-CIMSPRT (row 1 and 2) and the LFD-CIMSPRT (row 3 and 4) under H1, ...H4 (left
to right). The upper row always depicts the ratio of correct detection while the lower row shows the average stopping time.

with increasing contamination. As before, the M-CIMSRT

exhibits a considerably lower AST overall than the LFD-

CIMSPRT.

In summary, the M-CIMSRT is a good alternative to the

LFD-CIMSPRT, delivering accurate detection results at a

much lower AST. In the shift-in-variance case, it might even

outperform the LFD-CIMSPRT.

VII. CONCLUSION

We showed how to robustify the Consensus+Innovations

Matrix Sequential Probability Ratio Test with robust estima-

tors. We proposed four robust algorithms of this kind and

showed that the best-performing solution based on the M-

estimator is comparable to the Least-Favorable-Density Con-

sensus+Innovations Matrix Sequential Probability Ratio Test.

Moreover, it has a much lower average stopping time and can

outperform the competitor under certain network conditions.
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