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Abstract—Fingerprint extraction plays an important role in
criminal investigation and information security. Convention-
ally, latent fingerprints are not readily visible and imaging
often requires to use intrusive manners. Hyperspectral imaging
techniques provide a possibility to extract fingerprints in a
non-intrusive manner, however it requires well-designed image
analysis algorithms. In this paper, we consider the problem of
fingerprint extraction from hyperspectral images and propose a
processing scheme. The proposed scheme extracts image textures
by local total variation (LTV) and uses Histogram of Oriented
Gradient (HOG) information to fuse these channels. Experiment
results with a real image show the ability of the proposed method
for extracting fingerprints from complex backgrounds.

Index Terms—Fingerprint extraction, hyperspectral images,
local total variation, texture, histogram of oriented gradient

I. INTRODUCTION

A fingerprint is a very recognized and acceptable security
feature. It is conventionally used for human identification
and criminal vetting. Fingerprints can be found on practically
any solid surface, and they can be classified two categories
according to their visibility. Visible fingerprints are formed
when blood or ink is transferred from a finger or thumb to a
surface. Latent fingerprints can be found on a wide variety of
surfaces, and they are formed when the bodys natural oils and
sweat on the skin are deposited onto another surface.

It is worth noting that latent fingerprints are not readily
visible and imaging often requires the use of fingerprint
powders, chemical reagents, in an intrusive manner. With the
advance of the imaging device, it is now possible to perform
a non-intrusive print extraction process via the hyperspec-
tral imaging technology. Hyperspectral imaging provides 2-
D spatial images over many contiguous bands. Rich spectral
information endows hyperpectral imaging with the ability to
perform detection, classification and analysis that can not
be achieved over conventional color images. This area has
received considerable attention in the last decade. Applications
include remote sensing [1], food security [2], anomaly detec-
tion [3], crop detection [4], identification of cultural relics [5],
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medical diagnosis [6], [7], atmospheric monitoring [8], etc [9]–
[11]. In [12], [13], they focused on fingerprints extraction of
latent fingerprints that can be distinguished conveniently from
spectral information. Hyperspectral imaging can thus serve as
a powerful tool for non-intrusive extraction for either visible
or latent fingerprints.

Most conventional fingerprint extraction/segmentation algo-
rithms are applied to gray images. Typically, these techniques
are based on the local texture direction of the image [14].
In [15], an algorithm is proposed to extract features of
fingerprints by using Gabor filter bank. In [16], the authors
presented a combined feature level and score level fusion
Gabor filter-based approach. In [17], a dictionary-based ap-
proach is proposed for automatic latent segmentation and
enhancement. In [18], the authors proposed to construct the
dictionary by region wise to correct the orientation field in
latent image. Unfortunately, none of them combine spectral
information with texture information. In [19], Zhang et al.
proposed a adaptive directional total variation (ADTV) image
decomposition scheme for latent fingerprint segmentation.

All of the above mentioned methods neither process multi-
channel data, not use spectral signatures of materials, they
can not be directly applied to the fingerprint extraction from
hyperspectral images. In this paper, we firstly describe the
problem of extracting fingerprints from hyperspectral data,
and propose an algorithm to perform this task. The proposed
algorithm first generate the texture images of each channel by
calculating LTV, and then use HOG to compute weights asso-
ciated to data cells for each channel. The extracted fingerprint
will be obtained by fusing all channels with these weights. The
proposed scheme benefits from the desired fingerprint texture
of each channel and provides promising extraction results.

II. DATA STRUCTURE AND PROBLEM DESCRIPTION

A hyperspectral image is a three dimensional data cube.
Suppose that the raw image under study is denoted by X ′′,
which has w pixels in each row and h pixels in each column.
Each pixel consists of a reflectance vector in L contiguous
spectral bands. Further we use superscript (k) to denote the
kth channel of the data.

A fingerprint generally presents an a concentric-whorl
alike pattern with a a series of small grooves and valleys.
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However complex background may damage distinct parts of
this pattern on each reflectance channel. Our objective is to
extract fingerprints by appropriately fusing the textures and
removing unrelated objects using multiple channel information
in the scene under study. Compared to conventional images,
three dimensional hyperspectral data can be beneficial in the
following two senses for extracting a fingerprint:

1) It is possible to use spectral signatures to detect a
fingerprint, or to rule out unrelated backgrounds. While
the former operation is mainly applied to visible finger-
prints, and the latter can be applied to both visible and
latent cases.

2) Though a fingerprint pattern may not be complete in
a single channel, it is possible to benefit multi-channel
information to fuse textures and form a complete finger-
print target.

III. FINGERPRINT EXTRACTION FROM A HYPERSPECTRAL
IMAGE

In this section, we propose a scheme for extracting finger-
prints from a hyperspectral image.

A. Data preprocessing and dimension reduction

Data preprocessing mainly includes noise reduction and nor-
malization process. For an image with significant acquisition
noise it can be beneficial to apply a Gaussian filter or a median
filter to remove noise. A further grey level transformation can
also be applied to the image to enhance the contrast, specially
for regions where fingerprints present, to facilitate the further
processing. For example, the logarithm transformation will be
used in our illustrative example in Sec. IV. We denote the this
step by

X ′′ ∈ IRh×w×L Preprocessing−−−−−−−→X ′ ∈ IRh×w×L. (1)

Hyperspectral data provides us with rich spectral information
that is favorable for target detection, extraction tasks. However
it can be computational cumbersome to perform analysis over
all channels because of spectral redundancy in data. This
implies the necessity of reducing the data size over the spectral
dimension. The most popular technique to perform this task
is principal-component analysis (PCA). PCA allows us to
generate principal components with dimension ` < L without
any priori information. If priori knowledges of background
materials are known, it is also possible to use spectral unmix-
ing techniques to perform the background removal.

We denote this step by

X ′ ∈ IRh×w×L Dim. reduction−−−−−−−−→X ∈ IRh×w×`. (2)

B. Channel-wise texture extraction

We then perform the texture extraction on each channel
X(k), since fingerprints present as a particular texture in
image. Consider that an image can be decomposed as

X(k) = U (k) + V (k), (3)

where we write X(k) as the sum of is cartoon component U (k)

and texture component V (k). We use the LTV-based technique
proposed in [20] to compute this decomposition. LTV of X(k)

is defined by

LTVσ(X(k)) = Lσ ◦
∣∣∇X(k)

∣∣ (4)

with Lσ being a low-pass filter with cut-off radius σ, and
∇ being the gradient operator. Thus, a function that indicates
texture trend in the neighborhood of (i, j)th pixel of X(k) can
be defined as

λσ,ij =

[
LTVσ(X(k)) + LTVσ(Lσ ◦X(k))

]
ij[

LTVσ(X(k))
]
ij

(5)

λσ,ij is called the local total variation reduction rate, ranging
from 0 to 1. A rate tending 0 to suggests that the (ij)th
pixel belongs to the cartoon image. A rate tending 1 suggests
that the (i, j)th pixel belongs to the texture image. Thus, the
texture and the cartoon image can be distinguished by a weight
function based on the LTV reduction rate, namely

[U (k)]ij = ω(λσ,ij)
[
Lσ ◦X(k) −X(k)

]
ij

+ [X(k)]ij (6)

where ω(·) is the soft threshold function given by

ω(y) =

 0, y ≤ a1
(y − a1)/(a2 − a1), a1 ≤ y ≤ a2
1, y ≥ a2

(7)

and parameters a1, a2 are usually fixed to 0.25 and 0.5. Finally,
the texture component associated to kth channel is obtained
by

V (k) = X(k) −U (k), for k ∈ {1, . . . , `}. (8)

C. Multichannel texture fusion

Note that texture components V (k) contain fingerprints
along with other high frequency components of the image.
It is then necessary to fuse all {V (k)}`k=1 from all channels
to complete fingerprints as well as to remove unrelated tex-
tures. To achieve this objective, we propose an HOG-based
multichannel texture fusion method in this subsection.

We present each texture component V (k) by a partition
consisting of non-overlapping cells V

(k)
ij of size m × m,

namely

V (k) =


V

(k)
11 · · · V

(k)
1 w

m

...
. . .

...
V

(k)
h
m 1

· · · V
(k)
h
m

w
m

 (9)

where we assume that h
m and w

m are integers without loss of
generality. Computing the gradient of each cell in x-direction
and y-direction leads to gradient ∇xV (k)

ij and ∇yV (k)
ij . For

any pixel s of V (k)
ij , the amplitude of the gradient at this pixel

is given by

ψ
(k)
ij (s) =

√
[∇xV (s)

ij (s)]2 + [∇yV (k)
ij (s)]2, (10)
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Fig. 1. Illustrative example with a real hyperspectral image. Upper: false color image. Bottom: examples of channels. Capturing parameters are shown in
Table. 1

and the angle is given by

θ
(k)
ij (s) = tan−1∇yV (k)

ij (s)/∇xV (k)
ij (s). (11)

We then generate the vector h(k)
ij ∈ IRκ of HOG, whose entries

are given by

[h
(k)
ij ]p =

∑
{s:θ(k)

ij (s)∈Ip}

|ψ(k)
ij (s)|

with Ip = [π(p− 1)/κ, pπ/κ]

(p = 1, 2, ..., κ)

(12)

The gradient direction is more consistent in cells where local
parts of a fingerprint appear, leading to a concentrated support
set of h

(k)
ij . A cell with random gradient directions results in

more uniformly distributed entries of h
(k)
ij . This implies the

entries of h(k)
ij corresponding to a cell with partial fingerprints

tends to have a larger variance. Therefore, it is reasonable to
use such a variance to rule out non-print cells, and derive
combination weights to fuse all channels. Let the variance
of h

(k)
ij be denoted by σ2(h

(k)
ij ), we propose to calculate the

combination weights with the following rule:

ω
(k)
ij =


σ2(h

(k)
ij )∑̀

q=1
σ2(h

(q)
ij )

if σ2(h
(k)
ij ) ≥ σ̄

0 otherwise.

(13)

where σ̄ is a user-defined threshold to determine whether
the current cell contains fingerprint features. Considering the
weight matrix Ω(k) with (ij)th entry given by ω(k)

ij , we per-
form the erosion and dilation operations to Ω(k) for removing
noisy interferences and filling holes in the target area. The
weights after operation are denoted by adding a tilde such

that ω̃(k)
ij . Finally the output image that segments fingerprints

is obtained by fusing ` channels with these weights:

O =


∑`
k=1 ω̃

(k)
11 V

(k)
11 · · ·

∑`
k=1 ω̃

(k)
1 w

m
V

(k)
1 w

m

...
. . .

...∑`
k=1 ω̃

(k)
h
m 1

V
(k)
h
m 1

· · ·
∑`
k=1 ω̃

(k)
h
m

w
m

V
(k)
h
m

w
m

 (14)

TABLE I
THE PARAMETERS OF HYPERSPECTRAL IMAGING

Parameters Value
Wavelength range (nm) 420− 720
Spectral resolution (nm) 8− 20

Image spatial size (pixels) 512× 640
Number of channels 31

Field 0−±7◦

IV. EXPERIMENT RESULTS

In this section, we validate the proposed hyperspectral
fingerprint extraction scheme via a real image. This image
was captured in our laboratory with a GaiaField hyperspectral
device. The scenario contained several pieces of leaves and a
flower. Two fingerprints presented in this scenario. The first
one was located on the upper-middle part with leaves and
petals as background, the other was located on the lower-right
part with petals and stamens as background. The false color
image is shown on the upper part of Fig. 1. Note that due to
the space limitation, though we only illustrate the proposed
scheme with this single image, this scene has a sufficiently
complex interaction between the target and background and
can be typical difficult problem for fingerprint extraction. It
is clear that the fingerprints in this scenario can not be easily
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The image of dimensionality reduction
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Fig. 2. Intermediate results of processing, using the upper part of the image. From left to right: 4 data channels after PCA. From top to bottom: channel
images after PCA, images after LTV.

The final synthetic image of top-left fingerprint
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(a) Fingprint-1

The final synthetic image of bottom-right fingerprint
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(b) Fingprint-2

Fig. 3. Final extraction results.

extracted with conventional techniques. The parameters of this
hyperspectral data is reported in Table 1. Specifically we notice
that the image has L = 31 spectral channels. Three exemplary
channel images are shown in the lower part of Fig. 1.

We then performed the proposed scheme. In the preprocess-
ing step, we used the logarithm transformation

f(x) = log(1 + x) (15)

to adjust the contrast of each channel. Dimension reduction
was performed via PCA. Considering eigenvalues that take
99% of total energy leads to ` = 4. The cell size was set to
m = 8, and the dimension of HOG vector was set to κ = 9.
Threshold σ̄ was set to 0.4. The intermediate processing results
are illustrated in Fig. 2 with a sub-region of the image. Finally
extraction results of these two fingerprints are shown in Fig 3.
This example shows the capacity of the proposed method for
extracting fingerprints from complex backgrounds.

V. CONCLUSION

Non-intrusive fingerprint extraction can be an important
application in practice. In this paper we proposed a method to
extract fingerprints from hyperspectral images. We used LTV
to compute the texture images of each channel, then used HOG
to compute weights to fuse the channels. Experiments with a
real hyperspectral image with complex backgrounds validated
the proposed algorithm. Future work will include using su-
pervised techniques to enhance the extraction performance,
creating a hyperspectral image database for fingerprints, and
validating algorithms with this database.
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