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Abstract—Time series of neuronal activity corresponding to
different activity states in mouse brain are analyzed in the
time domain and the time-frequency domain. The signals are
associated with either a slow wave brain state or a persistent
brain state. For both states, characteristic spectral features are
identified and a simple detector is proposed that is able to identify
the brain state with low latency and high accuracy. In practice,
being able to monitor the brain state online and in real time is
crucial for improved in vivo experiments and, ultimately, for a
causal understanding of brain dynamics.

Index Terms—Brain state, neuronal circuits, detection, hypoth-
esis testing, time-frequency analysis

I. INTRODUCTION

Spontaneous changes of neuronal network activity states
are of great interest in neuroscience research [1], [2]. The
two brain states investigated in this paper are referred to as
the slow wave brain state and the persistent brain state. The
slow wave activity state is characterized by frequent transi-
tions between hyperpolarized Down states and depolarized
Up states. It can occur, for example, during non-rapid-eye-
movement sleep and during many forms of anesthesia, both
spontaneously and evoked by brief sensory stimulation [3],
[4], [5]. The persistent brain state, in contrast, is characterized
by desynchronized neuronal behavior and occurs during rapid-
eye-movement sleep and active wakefulness [1].

For the experimenter, it is highly attractive to be able to
detect these two states with low latency in order to manipulate
the experiment in real-time. For instance, depending on the
detection result, an experimenter can control the doses of
anesthesia drugs to maintain a certain brain state. Therefore,
the aim of this paper is to tackle this problem from a signal
processing point of view. Its contribution is twofold: first, a
detailed discussion of the characteristics of the microcircuit
activity in both states in the time and time-frequency domain
is given. Here, the focus is on the time-frequency domain,
since it admits several distinct features that, to the best of the
authors’ knowledge, have not been studied in existing work

yet. Second, the brain state detection problem is formulated
as a binary hypothesis test and a detector is proposed to
distinguish between the two states without human intervention.
Since the available data is scarce and its interpretation is, to
an extent, still the subject of ongoing research, the detector
is deliberately kept simple and merely serves as a proof of
concept.

The presented results are based on experiments that were
conducted on three different mice. Four weeks prior to the
experiments, a small craniotomy was performed with a dental
drill (Ultimate XL-F, NSK, Trier Germany, and VS1/4HP/005,
Meisinger, Neuss, Germany) in 3 female mice with a body-
weight between 20−25 g, fixed in a stereotactic frame and
under isoflurane anaesthesia (Forene, Abott, Wiesbaden, Ger-
many). 400 nl of the genetically encoded calcium indica-
tor GCaMP6f (UPenn Vector Core, PA, USA) was injected
−300 µm and −150 µm below the cortex surface in the area
of the visual cortex (V1). After injection, a coverslip (Electron
Microscopy Sciences, PA, USA; 5mm diameter) was used to
seal the craniotomy.

For in vivo imaging, the mice were anesthetized with
isoflurane to induce persistent and slow wave brain states. In
addition, the breathing rate was used as an indicator and mon-
itored to assess the physiological condition of the animals. To
induce a persistent brain state, a mixture of isoflurane/oxygen
of 0.6−1% was used, the breathing rate was 100 /min. To
induce a slow wave brain state, we used a relation of 1−1.5%
at a breathing rate of 50−70 /min.

Imaging was performed at a two-photon microscope (LaV-
ision Biotech, Bielefeld, Germany) with an excitation wave-
length of 920 nm at 5−20% of maximum laser power (3W).
The focus point was at 200 ± 50 µm with a field of view
of 325×325 µm. The sample rate was 30.5Hz. By that, the
optical correlate of neuronal spiking of a local microcircuit
comprising about 100−200 neurons in layer II/III of mouse
visual cortex is measured. Here, we integrated the activity of
the entire microcircuit.
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Fig. 1: Examples of signals in slow wave brain state (a)-(c) and in persistent brain state (d).

The remainder of this paper is organized as follows. In
Section II, the recorded time series are analyzed first in the
time domain and then in the time-frequency domain. Based on
their time-frequency representations, several spectral features
are extracted, which are used in Section III to formulate a
binary hypotheses test to discriminate between the slow wave
and the persistent brain states. In Section IV, experimental
results based on real data are given. Section V concludes the
paper.

II. CHARACTERISTICS OF SLOW WAVE AND PERSISTENT
BRAIN STATES

A. Characteristics in the Time Domain

Examples of time series that were observed in different brain
states are shown in Fig. 1. Note that the depicted signals have
already been detrended using the empirical mode decomposi-
tion method [6]. In the persistent brain state, see Fig. 1d, the
time series shows rapid and irregular signal fluctuations. In
contrast, in Figs. 1a to 1c, it can be seen that the slow wave
brain state is associated with Up-Down transitions, consisting
of hyperpolarized Down states and intermittent depolarized
Up states [1]. The Up state and the Down state correspond
to a pulse-shaped transient and a comparatively steady region
between the offset and the onset of the transients, respectively.
Comparing the three examples for time series in the slow
wave brain state leads to two main observations. First, the
frequency of occurrence and the duration of the state transients
are noticeably different. Unlike the long-lasting Down state in
Fig. 1a, the Down states in Fig. 1b and Fig. 1c are difficult
to identify. According to the experimental observation, the Up
state transients occurred with frequencies ranging from 3 to 10
events per minute, depending on the level of anesthesia. The
second observation is that the shapes of the Up state transients
differ from subject to subject. In Fig. 1a, the transient has a
steep onset and a slowly decaying offset. Clearly, the transients
in Fig. 1c have a distinctly different shape. Moreover, the
amplitudes of the transients depend on many local parameters,
including the level of Ca2+ indicator inside cells and the
intensity of the excitation light [1], so that they differ over

time and among subjects. In summary, these effects make it
difficult to detect slow wave brain states directly in the time
domain.

B. Time-Frequency Representations

In order to reveal more characteristics, it is useful to
transform the time series to the time-frequency domain. A
quadratic time-frequency distribution of a non-stationary sig-
nal presents its power distribution over the time-frequency
plane. Here, we choose the spectrogram since it provides a
good tradeoff between simplicity and performance, i.e., cross-
term suppression.

Fig. 2 depicts examples of spectrograms at different states
and of different subjects. Figs. 2a to 2c depict the spectrograms
of slow wave brain state signals and Fig. 2d depicts the
spectrogram of a persistent brain state signal. In the slow wave
brain state, there is a high frequency line around 6 to 8Hz.
The intensity of this line, however, varies with subjects. A high
frequency line is also present in the persistent brain state, but
it differs from the slow wave brain state in that it is located
at a higher frequency range, namely, 8 to 10Hz. However,
it is possible that this high frequency component is caused
by breathing or other unknown artifacts that are unrelated
to the brain activity. Hence, a better understanding of this
high frequency component is needed and further experiments
will be conducted to explore its origin. In this paper, we
show detection results when including and excluding this high
frequency component.

In addition to the high frequency line, a low frequency line
is present in the slow wave brain state at around 1Hz. From a
neurophysiological perspective, this frequency line is a much
more reliable indicator for the slow wave brain state than the
high frequency component. It is worth noting that a similar line
in the same frequency range is occasionally observed in the
persistent brain state as well. This raises the question whether
the respective frequency component is present in the persistent
brain state as well, or if it is caused by a superposition or
alternation of slow wave and persistent brain states.
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Fig. 2: Examples of spectrograms (Hamming window of 10 seconds) in slow wave brain state (a)-(c) and in persistent brain state (d).
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Fig. 3: Examples of normalized spectrograms (Hamming window of 10 seconds) of bandpass filtered signals in slow wave brain state (a)-(c)
and in persistent brain state (d).

The spectrogram of the persistent brain state signal is
dominated by low frequency components <2Hz. In contrast,
in the two examples of the slow wave brain state in Figs. 2a
and 2b, there is a larger share of power in the frequency region
>2Hz. The third example in Fig. 2c differs from the previous
two examples in that most power is concentrated in a relative
narrow low frequency region <0.2Hz. The reason is that its
corresponding time series, depicted in Fig. 1c, is oscillating at
a very low frequency. The amplitude of these slow oscillations
is substantially larger than that of the superimposed fast
oscillations, leading to dominant low frequency components.
Since they obfuscate the relative power distribution among the
higher frequencies, the high-power low frequency components
are filtered out in order to extract the power percentage feature,
see Section III-B.

We conclude this section by stating several minor observations,
which are not used in the detection approaches, but are
included for completeness. A nonlinear high frequency com-
ponent at around 13 to 15Hz is observed in several examples,
both in slow wave and persistent brain states. Furthermore,
several examples of both states contain harmonic components.
Additionally, repetitive short vertical lines located in low
frequency regions are present in several examples in the
slow wave brain state, as shown in Figs. 2a and 2c. The
temporal positions of these vertical lines correspond to the
time instances with rapid variation, for example, during the
transition from a Down state to an Up state in Fig. 1a.
However, if the Up states occur in rapid succession, as is
the case in Fig. 1b, this phenomenon is not visible in the
spectrogram – compare Fig. 2b.
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III. STATE DETECTION

A. Problem Formulation

We formulate the brain state detection problem as a binary
hypothesis test with the two hypotheses, namely

H0 : persistent brain state,
H1 : slow wave brain state,

(1)

which are referred to as the null hypothesis and the alternative
hypothesis, respectively. The hypothesis test is performed
using several features that are calculated for every time instant
n and are denoted by v(n). More details on the features are
given in the subsequent section. Finally, the detector D maps
a feature vector v(n) to a decision d for one of the two
hypotheses, i.e.,

d = D (v(n)) ∈ {0, 1} , (2)

where 0 and 1 represent H0 and H1, respectively.

B. Feature Extraction

Several features are extracted from the time-frequency dis-
tribution of the time series based on the observations in Sec-
tion II-B. The spectrogram of the filtered signal is calculated
as

S(n, k) =

∣∣∣∣∣
M−1∑
m=0

s(n−m)w(m)e−j2π
mk
M

∣∣∣∣∣
2

, (3)

where n = 0, . . . , N − 1 denotes the time index, s(·) is the
time series of length N ∈ N, w(·) is a window function of
length M ∈ N and k is the frequency bin index [7].

To extract the frequency line within the interval 6 to 10Hz,
we calculate the frequency corresponding to the highest power
density over this region. More specifically, the frequency bin
with the highest power, denoted by kh(n), is defined as

kh(n) = arg max
k

S(n, k) s.t. fh(n) ∈ [6, 10]Hz, (4)

where fh(n) denotes the physical frequency corresponding to
the bin with index kh(n). In what follows, the one-to-one
mapping between the indices and the physical frequencies is
denoted by l(·), i.e.,

fh(n) = l(kh(n)) and kh(n) = l−1(fh(n)). (5)

Estimating the frequency line around 1Hz in real time is
challenging since it is occasionally covered by its neighboring
low frequency components and its value varies with the
experiment subject. To capture this feature, two closely related
quantities are considered. The first one aims at approximating
the frequency location of the line and, for each time instance
n, it is calculated by finding the frequency that corresponds to
the dominant peak of S(n, k) within the interval 0.5 to 2Hz.
This frequency is denoted by fl(n). On the basis that the low
frequency line is located between 0.8Hz and 1.5Hz in all
experimental data, we define the variable f il (n) that indicates

whether the low frequency line is located within this frequency
band or not, namely

f il (n) =

{
1, fl(n) ∈ [0.8, 1.5]Hz,
0, otherwise.

(6)

It should be highlighted that the low frequency line can be
better identified by considering a longer time series instead of
only the current time-frequency distribution S(n, k). However,
this comes at the cost of an additional latency. Furthermore,
the threshold-values are selected based on the experimental
data. Adjusting these values has the potential of improving the
detection performance. This, however, is beyond the scope of
this paper.

To characterize the differences in the power distribution in
both states, the percentage of power in the frequency region
<2Hz is considered as an additional spectral feature. To this
end, the time series s(n) is first filtered with a bandpass filter
with a passband at 0.2 to 6Hz so that the influence of the high
frequency line above 6Hz and the high-power low frequency
component <0.2Hz, which is cause by the slow oscillations,
are eliminated. Subsequently, the spectrogram of the bandpass-
filtered time series is normalized at each time instance and
the percentage of power in the band 0.2 to 2Hz, denoted as
PE(n), is defined by

PE(n) =

k=l−1(2)∑
k=l−1(0.2)

SBP, norm(n, k), (7)

where SBP, norm(n, k) is the normalized spectrogram of the
bandpass filtered signal, i.e.,

k=l−1(6)∑
k=l−1(0.2)

SBP, norm(n, k) = 1. (8)

The normalized spectrograms are depicted in Fig. 3. Af-
ter normalizing and removing the dominant low frequency
component, the difference in the power distributions in both
states becomes noticeable. As shown in Fig. 3d, most power
is concentrated in the frequency region below 2Hz in the
persistent brain state. In the slow wave brain state, a larger
share of the power is distributed in the frequency region
between 2Hz and 6Hz, see Figs. 3a to 3c. Therefore, PE(n)
is expected to be high when the subject is in the persistent
brain state and to be low in the slow wave brain state.

C. Binary Hypothesis Testing Methods

First, a hypothesis test based on each single feature is
considered. In this case, a nonparametric threshold test is per-
formed, since the underlying distributions of the features are
unknown [8]. Using the percentage of power as an example,
i.e., v(n) = PE(n), the nonparametric threshold test is defined
by

d =

{
0, PE(n) > τ

1, otherwise
(9)

where τ denotes the threshold.
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Fig. 4: Decision Tree using f i
l (n) and PE(n).

In order to improve the detection performance, we further
combined the binary-valued feature f il (n) and the power
distribution feature PE(n). We solve this binary test problem
using a decision tree [9]. The decision tree is defined as shown
in Fig. 4. In the first step, the value of f il (n) (0 or 1) is
calculated to establish whether the slow wave brain state or
the persistent brain state is more likely to be true. This splits
the test into two branches. In the second step, a nonparametric
threshold test is conducted using PE(n), where the thresholds
are τ1 and τ0, respectively.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed state
detection method, detection is performed at every time instant
n and for every test subject. The output of the detector is
then compared to manually placed labels that are considered
to represent the ground truth.

The detection results based on single features and using the
decision tree approach are depicted in Fig. 5. The results are
shown in terms of the receiver operating characteristic (ROC),
i.e., the detection rate (sensitivity) is plotted against the false
alarm rate (specificity). Here, the detection rate represents the
probability of correct detection of the slow wave brain state
and the false alarm rate represents the probability of erroneous
detection. The low frequency component provides the least
satisfactory detection result, partially owing to the interruption
of the low frequency line, as illustrated in Figs. 3a to 3c.
The dashed red line shows the detection result after excluding
atypical subjects for which the low frequency component is
also observed in the persistent brain state. By inspection, the
false alarm rate is significantly reduced for the same detection
rate.

The high frequency component fh(n) provides the best de-
tection performance, followed by the power percentage feature
PE(n). However, as mentioned in the preceding sections, the
high frequency component may be associated with artifacts
so that it is not clear whether or not it can be considered
a characteristic of the brain states. More experiments are
required to obtain a better understanding of this frequency line.
Surprisingly, a decision tree using both PE(n) and the low
frequency component indicator feature f il (n) achieves results
similar to those of the detector based only on PE(n). This can
be explained by the fact that the distributions of PE(n) are
approximately equivalent in both states, i.e. for f il (n) = 0 and
f il (n) = 1. This observation, however, may change as more
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experimental data become available and as additional features
are identified.

V. CONCLUSION AND OUTLOOK

We draw three main conclusions. First, automatically detect-
ing slow wave and persistent brain states seems to be possible
with low latency and high accuracy. Considering that even
the relatively simple methods proposed in this paper show a
reasonable detection performance, we conjecture that focused
efforts in this area of research will lead to fast and highly re-
liable detectors. However, second, further validation is needed
with a larger data set. Finally, given more data, a thorough
investigation of how to choose a causal and consistent set of
features is necessary that also explores signal representations
beyond the classic domains of time and frequency.
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