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Abstract—Spectral unmixing aims to determine the component
materials and their associated abundances from mixed pixels
in a hyperspectral image. Instead of performing unmixing in-
dependently on each pixel, investigating spatial and spectral
correlations among pixels can be beneficial to enhance the
unmixing performance. However linking pixels across an entire
image for such a purpose can be computationally cumbersome
and physically unreasonable. In order to address this issue, we
propose to construct superpixels for hyperspectral data unmix-
ing. Using an SLIC-based (Simple Linear Iterative Clustering)
superpixel constructing process, adjacent pixels are clustered
into several blocks with similar spectral signatures. After this
preprocessing, unmixing is then performed with a graph-based
total variation regularization to benefit from the heterogeneity
within each superpixel. Experimental results on synthetic data
and real hyperspectral data illustrate advantages of the proposed
scheme.

Index Terms—Hyperspectral images, spectral unmixing, super-
pixel analysis, graph regularization

I. INTRODUCTION

Due to the limitation of spatial resolution and intimate
interactions of materials, the observed reflectance at each pixel
of hyperspectral data is typically a mixture of several spectral
signatures of several pure materials. Spectral unmixing is thus
an important task for hyperspectral data processing to analyze
information in each pixel. It usually consists of extracting
the spectral signatures and evaluating their associated fraction
abundances [1], [2].

Instead of performing the spectral unmixing on each in-
dividual pixel, it can be beneficial to investigate spectral or
spatial correlation among pixels to enhance the estimation
performance. For instance, in [3] authors present the spatial-
spectral coherence regularization that was imposed to allow
abundance estimation for a pixel to be influenced by its
spectrally similar and spatially adjacent neighbors. In [4], [5]
authors propose to include the total variation regularization
into the unmixing to achieve the piecewise spatial consistency
of estimated abundances. In [6], a nonlocal total variance reg-
ularization is imposed on the reconstructed spectra rather than
directly on the abundances over the entire image and in [7], a
graph Laplacian regularization (GLUP-Lap) is introduced over
the entire image, and the spectral clustering, computational
intensive for a large image, is applied to the constructed graph.

The work of Jie Chen was supported in part by Natural Science Foundation
of Shenzhen under grant JCYJ2017030155315873.

In [8], authors perform the unmixing with low-rank spatial
regularization within fixed-size square windows. However, in
[4]–[7] linking pixels across an entire image, either in the sense
of spatial correlation or spectral correlation, can be compu-
tationally cumbersome and physically unreasonable. Further,
like in [8] using regularization in fixed square windows can be
sub-optimal since the form of such a window is not coherent
with image textures. In order to address this issue, we propose
to construct superpixels for hyperspectral data unmixing.

Recently superpixels analysis has been used for hyper-
spectral applications, such as dimensionality reduction [9],
hyperspectral change detection [10], classification [11], hyper-
spectral images segmentation [12] and spectral unmixing [13],
[14]. In [13], authors use AVMAX and MVES, two typical
endmember extraction algorithms for endmember extraction
on the superpixel set. In [14], authors use a modified SLIC
algorithm of [15] for endmember extraction, followed by fur-
ther fine tuning steps to obtain final endmembers. These works
use superpixels to benefit endmember extraction, however
abundance estimation is performed with common methods.

In this paper, we concentrate on using superpixels to im-
prove the fractional abundance estimation. In order to make
use of the spatial-spectral information better,we construct
superpixels for a hyperspectral image via an SLIC-based
algorithm, and perform the spectral unmixing using a graph
regularization within each superpixel. Since the number of
superpixels is significantly smaller than the number of pix-
els in the original image, unmixing within each superpixel
largely reduces computational burden. Further, compared to
spatial regularization within windows of a fixed size, unmixing
performance can also be enhanced thanks to the spectral homo-
geneity within superpixels. Then Alternating Direction Method
of Multipliers (ADMM) is used for solving the unmixing
problems. The Simulations with both synthetic and real data
validate the proposed scheme.

II. DATA MODEL

Notation. Normal font x or X denotes scalars. Boldface
small letters x and capital letters X denote column vectors
and matrices, respectively. The superscript (·)> denotes the
transpose operator. ‖X‖F and ‖X‖1,1 denote the Frobenius
norm and the `1,1 norm of the matrix argument X respectively.
‖x‖1 denotes the `1 norm of vector x.
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Suppose that the hyperspectral image under study has w
pixels in each row and h pixels in each column. Each pixel
consists of a reflectance vector in L contiguous spectral bands.
In order to facilitate the presentation, we transform this 3-D
data into an L × N matrix, with N = w × h being the total
number of pixels. Then, let R = [r1, . . . , rN ] ∈ IRL×N be
the observed reflectance vectors, consisting of a mixture of at
most R signature spectra, S = [s1, . . . , sR] ∈ IRL×R be the
endmember matrix, which is a spectral library consisting of
spectral signatures si, and X = [x1, . . . ,xN ] be the matrix
composed of all the abundance vectors. In the scope of this
work, we consider the linear mixture model where an observed
pixel is a combination of signature spectra weighted by the
abundances, namely,

R = SX+ Z (1)

where Z ∈ IRL×N is the modeling noise. To be physically
meaningful, it is often required that each column of X is
subject to two constraints, abundance nonnegative constraint
(ANC) and abundance sum-to-one constraint (ASC).

III. SUPERPIXEL CONSTRUCTION FOR HYPERSPECTRAL
DATA

In this section, we propose a strategy to construct superpix-
els for a hyperspectral image. Considering the simplicity and
effectiveness of the conventional SLIC algorithm, an SLIC-
based algorithm is proposed to construct superpixels in the
context of hypsepctral image analysis.

The algorithm SLIC can be viewed as a specific form
of k-means clustering and has been widely used in image
segmentation. In brief, for color images in the CIELAB space,
the algorithm clusters pixels with a multiple dimensional
feature composed by color channels and pixel coordinates to
efficiently generate compact, nearly uniform superpixels. It
is straightforward to extend SLIC to hyperspectral data. Let
D(i, j) denote the dissimilarity between two pixels i and j,
and it is calculated by combining the spatial distance ds(i, j)
and spectral distance dc(i, j) via:

D(i, j) =

√
d2c(i, j) +

[ds(i, j)
S

]2
m2 (2)

ds(i, j) =
√
(xi − xj)2 + (yi − yj)2 (3)

dc(i, j) = ‖T(ri − rj)‖ (4)

where (xi, yi) are coordinates of pixel i, S is the nominal
size of a superpixel set by

√
N
k with k controlling the

number of superpixels, and m weighs the relative importance
between spectral and spatial similarity. Specifically, matrix
T ∈ IRL

′×L with L′ < L is a transformation matrix to
remove spectral redundancies. It can be set to perform band
selection or dimension reduction via, for instance, the Principal
Component Analysis.

The rationale of using superpixels can be summarized into
the following two aspects:

Fig. 1. Left: False color image of Cuprite data. Right: Constructed
superpixels with m = 1.4 and k = 180.

1) Since the sizes of superpixels are significantly smaller
than the original image, unmixing within each superpixel
will largely reduce computational burden of the analysis.

2) A superpixel is an irregular area of local pixels with ho-
mogenous spectra. Irregularity in shape makes the area
fit the local image texture, and maximumly contributes
to cooperative processing across pixels. Homogeneity of
spectra is also beneficial for spatial regularization and
sparse estimation.

Fig. 1 shows the superpixel construction result of the
AVIRIS Cuprite data by the SLIC-based algorithm. We can see
the algorithm partitions this hyperspectral image as expected
into local blocks with similar spectra within each block.

IV. GRAPH-REGULARIZED SPARSE UNMIXING

In this section, we propose to perform a graph regularized
sparse unmixing with the constructed superpixels. In ith super-
pixel, the unmixing will be performed on R(i) and X(i), which
respectively denote the pixels and associated abundances in the
current superpixel. Other variables that are associated to the i
pixels are indicated with superscript (i).

A. Graph Representation

In hyperspectral images, each pixel can be viewed as a
node and weights in edges measure the similarity of nodes.
The adjacency matrix A is often used to express a graph
whose elements indicate the connectivity of the pairs of nodes.
One simple way to construct a graph is considering a four-
neighborhood graph in spatial coordinates. In term of spectral
dimension, we can measure the spectral similarity (Euclidean
distance or spectral angle) among the pixels. In [7], the
adjacency matrix A is defined according to{

Ak` = 1 if ‖rk − r`‖22 < δ,

Ak` = 0 otherwise
(5)

where δ represents the maximum squared spectral distance
required in order to consider that two pixels are similar.
Moreover, we can build the spatial-spectral combined graph
and some other graph construction techniques, as in [16].
Since working on a graph associated with the entire image can
be quite computational intensive, in this work, we construct
subgraphs within superpixels that can be considered as a first
layer segmentation.
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B. Graph-regularized Linear Unmixing

Based on the linear mixing model (1), the unmixing problem
can be expressed in a matrix form under ANC by

min
X(i)

1

2
‖R(i) − SX(i)‖2F + µ‖X(i)‖1,1 + λg(X(i)),

subject to : X(i) ≥ 0 (6)

where µ and λ are regularization parameters, `1,1-norm is
applied to a superpixel X(i) for a sparse selection of con-
tributing endmembers from spectral library S, and function
g regularizes the estimation via the constructed graph within
superpixel i by

g(X(i)) =
n∑
k=1

n∑
`=1

[A(i)]k`‖x(i)
k − x

(i)
` ‖1 (7)

This term serves as a regularization that penalizes the discrep-
ancies between all pair of estimated abundances weighted via
a graph-based total variation. In order to efficiently solve the
problem (6), the graph regularized term (7) can equivalently
be written using the incidence matrix B(i) of a graph, that is:

n∑
k=1

n∑
`=1

[A(i)]k`‖x(i)
k − x

(i)
` ‖1 = ‖X(i)B(i)‖1,1 (8)

Problem (6) can then be written as:

min
X(i)

1

2
‖R(i) − SX(i)‖2F + µ‖X(i)‖1,1 + λ‖X(i)B(i)‖1,1

subject to : X(i) ≥ 0 (9)

C. Solution via ADMM

We shall now propose to solve the optimization problem (9)
via the ADMM algorithm. In order to simplify the notation,
we discard the superscript(i) without ambiguity. Introducing
auxiliary variables V1 to V4, problem (9) can be rewritten as
follows:

min
X

1

2
‖R−V1‖2F + µ‖V2‖1,1 + λ‖V4‖1,1 + lRR×n

+
(V2),

subject to : V1 = SX,V2 = X,V3 = X,V4 = V3B (10)

where lR+
(X) =

∑n
i=1 lR+

(xi) is the indicator function such
that lR+

(xi) is 0 if xi belongs to the nonnegative orthant and
+∞ otherwise. The corresponding augmented Lagrangian is
given by:

L(X, {Vi}4i=1, {Di}4i=1)

=
1

2
‖R−V1‖2F + µ‖V2‖1,1 + λ‖V4‖1,1 + lRR×n

+
(V2)

+
ρ

2
‖SX−V1 −D1‖2F +

ρ

2
‖X−V2 −D2‖2F

+
ρ

2
‖X−V3 −D3‖2F +

ρ

2
‖V3B−V4 −D4‖2F (11)

where D1, D2, D3, D4 are Lagrange multipliers and ρ is the
penalty parameter. The solution to (10) can then be achieved
by iteratively minimizing X and {Vi}4i=1, and updating
{Di}4i=1 via the routine of ADMM. The complete algorithm
is summarized in Algorithm 1 where soft(·) denotes the row-
shrinkage thresholding operator [17].

Fig. 2. Left: False color image of Data1. Right: Constructed super-
pixels of Data1 with m = 1 and k = 120.

Algorithm 1 Algorithmic path for problem (11)
Input: S, Y, µ, λ, ρ
Output: The estimated abundance X

1: Initialize: X, V1 . . .V4, D1 . . .D4, k = 0
2: while not converged do
3: Xk+1 ← (STS+ 2I)−1[S>(Vk

1 +Dk
1) +Vk

2

+Dk
2 +Vk

3 +Dk
3 ]

4: Vk+1
1 ← [ρ(SXk+1 −Dk

1) +R](1 + ρ)−1

5: Vk+1
2 ← max[0, soft(Xk+1 −Dk

2 ,
µ
ρ )]

6: Vk+1
3 ← [(Vk

4 +Dk
4)B

> +Xk+1 −Dk
3 ](I+BB>)−1

7: Vk+1
4 ← soft(Vk+1

3 B−Dk
4 ,
λ
ρ )

8: Dk+1
1 ← Dk

1 − SXk+1 +Vk+1
1

9: Dk+1
2 ← Dk

2 −Xk+1 +Vk+1
2

10: Dk+1
3 ← Dk

3 −Xk+1 +Vk+1
3

11: Dk+1
4 ← Dk

4 −Vk+1
3 B+Vk+1

4

12: Update k : k = k + 1
13: end while

V. EXPERIMENTAL RESULTS

In this section, we illustrate the processing results using
the proposed scheme via a synthetic hyperspectral data set
(denoted by Data1) and a real hyperspectral data set (denoted
by Data2).

The first data set Data1 was generated using 5 endmembers
containing 75 × 75 pixels. The endmembers were randomly
selected from the USGS spectral library. Each signature of
this library has reflectance values measured over 224 spectral
bands. The pure regions and mixed regions involved between 2
and 5 endmembers, spatially distributed in the form of square
regions. See image DC1 in [4] for details. False color image
of Data1 and the constructed superpixels under SNR = 30dB
are illustrated in Fig. 2. It is clear that structural patterns
in this image are well extracted. We perform the proposed
unmixing algorithm along with the constructed superpixels,
and compare the results with FCLS [18], SUnSAL-TV and
GLUP-Lap in different SNR conditions. The root mean square
error (RMSE) is used to evaluate the performance. We test
different sparse and spatial regularized parameters µ and λ
for SUnSAL-TV, GLUP-Lap and the proposed algorithm. For
GLUP-Lap and the proposed algorithm, augmented Lagrange
parameter is set to ρ = 0.5. Table I shows the performance
with optimal parameters set for each algorithm. The proposed
scheme results in almost the same RMSE compared to GLUP-
Lap, but lower than those of FCLS and SUnSAL-TV. However,
it should be noted that the GLUP-lap algorithm involves the
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Fig. 3. Estimated abundance maps for Data1. From top to bottom: 1st, 4th, 5th abundance maps. From left to right: True abundance maps,
FCLS, SUnSAL-TV, GLUP-Lap and proposed algorithm results.

spectral clustering, where the number of clusters are hard to
determine and computational complexity is therefore high due
to the eigendecomposition. Table II shows that the processing
time of the proposed scheme is much less than that of GLUP-
Lap. Fig. 3 illustrates the estimated abundance maps of 1st,
4th and 5th endmembers. Particularly, we observe that in the
1st abundance map the second column of the square regions
is better conserved by the proposed scheme.

TABLE I
RMSE EVALUATING PERFORMANCES WITH DIFFERENT VALUES
OF SNR IN DATA1, WITH OPTIMAL REGULARIZED PARAMETERS

(µ, λ) FOR SUNSAL-TV, GLUP-LAP AND PROPOSED
ALGORITHM, THRESHOLDS δ FOR GLUP-LAP AND THE

PROPOSED ALGORITHM.

SNR 15dB 20dB 30dB
FCLS 0.0318 0.0262 0.0173

SUnSAL-TV 0.0181
(0.05,0.1)

0.0156
(0.05,0.05)

0.0073
(0.005,0.01)

GLUP-Lap
0.0161

(0.005,1)
δ = 9

0.0141
(0.01,0.5)
δ = 2.5

0.0049
(5× 10−4,0.5)

δ = 0.3

Proposed
0.0162

(0.3,0.05)
δ = 9

0.0141
(0.08,0.05)
δ = 2.5

0.0050
(0.05,0.1)
δ = 0.25

TABLE II
RUNTIME OF GLUP-LAP AND THE PROPOSED ALGORITHM.

Data1 Data2
GLUP-Lap 311s 808s
Proposed 77.8s 151s

We also tested algorithms with a real hyperspectral image.
The image is captured on the Cuprite mining district by
AVIRIS. A sub-image of 250× 191 pixels was chosen and it
contains 188 spectral bands. The number of endmembers was
estimated and set to 12 [19]. VCA algorithm was then used to
extract the endmembers. The reconstruction error (RE) (RE =√

1
NL

∑N
i=1 ‖yi − ŷi‖22) was used to evaluate performances

of algorithms. As shown in Table III, the proposed scheme
exhibits a low RE, though it is noted that RE is not always
directly related to abundance estimation accuracy. Superpixel

TABLE III
RES OF THE FOUR COMPARED ALGORITHMS WITH OPTIMAL

REGULARIZED PARAMETERS (µ, λ) FOR SUNSAL-TV,
GLUP-LAP AND PROPOSED ALGORITHM, THRESHOLDS δ FOR

GLUP-LAP AND THE PROPOSED ALGORITHM.

FCLS SUnSAL-
TV

GLUP-Lap Proposed

RE 0.0068 0.0050
(0.001,0.001)

0.0068
(0.001,1× 10−4)

δ = 0.3

0.0051
(0.01,1× 10−4)

δ = 0.1
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Fig. 4. Abundances maps of selected materials in Data2. From top
to bottom: 1st and 8th abundance map. From left to right: FCLS,
SUnSAL-TV, GLUP-Lap and proposed algorithm.

analysis result is shown in Fig. 1. Fig. 4 shows 1st and
8th abundance maps where the proposed algorithm highlights
localized targets without over smoothing the abundance maps.

VI. CONCLUSION

Hyerpspectral unmixing can benefit from the superpixel
construction in abundance estimation performance and com-
putational efficiency simultaneously. In this work we pro-
posed to construct superpixels via an SLIC-based algorithm
and perform the unmixing via the graph-regularization. The
experimental results confirm the advantages of the proposed
scheme. In the future, we will investigate multilayer superpixel
construction methods and regularization across superpixels to
further increase the flexibility of the proposed scheme.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 655



REFERENCES

[1] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal
Processing Magazine, vol. 19, no. 1, pp. 44–57, 2002.

[2] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, “Hyperspectral unmixing overview: Geometrical,
statistical, and sparse regression-based approaches,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 5, no. 2, pp. 354–379, 2012.

[3] A. Castrodad, Z. Xing, J. B. Greer, E. Bosch, L. Carin, and G. Sapiro,
“Learning discriminative sparse representations for modeling, source
separation, and mapping of hyperspectral imagery,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4263–4281,
2011.

[4] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation
spatial regularization for sparse hyperspectral unmixing,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 50, no. 11, pp. 4484–
4502, 2012.

[5] J. Chen, C. Richard, and P. Honeine, “Nonlinear estimation of material
abundances in hyperspectral images with `1-norm spatial regularization,”
IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2654–2665, May
2014.

[6] R. Ammanouil, A. Ferrari, and C. Richard, “Hyperspectral data unmix-
ing with graph-based regularization,” in Proc. IEEE GRSS Workshop
Hyperspectral Image Signal Processing: Evolution in Remote Sensing
(WHISPERS), 2015, pp. 1–4.

[7] R. Ammanouil, A. Ferrari, and C. Richard, “A graph laplacian regular-
ization for hyperspectral data unmixing,” in Proc. of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015,
pp. 1637–1641.

[8] Q. Qu, N. M. Nasrabadi, and T. D. Tran, “Abundance estimation for
bilinear mixture models via joint sparse and low-rank representation,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 7,
pp. 4404–4423, 2014.

[9] X. Zhang, S. E. Chew, Z. Xu, and N. D. Cahill, “Slic superpixels for ef-
ficient graph-based dimensionality reduction of hyperspectral imagery,”
in Proc. SPIE, 2015, vol. 9472, p. 947209.

[10] A. Ertürk, S. Ertürk, and A. Plaza, “Unmixing with slic superpixels
for hyperspectral change detection,” in Geoscience and Remote Sensing
Symposium (IGARSS), 2016 IEEE International, 2016, pp. 3370–3373.

[11] L. Fang, S. Li, X. Kang, and J. A. Benediktsson, “Spectral–spatial clas-
sification of hyperspectral images with a superpixel-based discriminative
sparse model,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 53, no. 8, pp. 4186–4201, 2015.

[12] H. Sun and A. Zare, “Map-guided hyperspectral image superpixel
segmentation using proportion maps,” in Proc. IEEE Geoscience and
Remote Sensing Symposium (IGARSS), 2017, pp. 3751–3754.

[13] X. Sun, F. Zhang, L. Yang, B. Zhang, and L. Gao, “A hyperspectral
image spectral unmixing method integrating SLIC superpixel segmen-
tation,” in Proc. IEEE GRSS Workshop Hyperspectral Image Signal
Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2016,
pp. 1–4.

[14] X. Xu, J. Li, C. Wu, and A. Plaza, “Regional clustering-based
spatial preprocessing for hyperspectral unmixing,” Remote Sensing of
Environment, vol. 204, pp. 333–346, 2018.

[15] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
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