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Abstract—In this paper we show that Compressive Sensing
(CS) can be casted as an impulse response estimation problem.
Using this interpretation we re-obtain some theoretical results of
CS in a simple manner. Moreover, we prove that in the case of
a randomly generated sensing matrix, reconstruction probability
depends on the kurtosis of the distribution used for its generation.

I. INTRODUCTION

Compressive Sensing (CS) was first introduced about ten

years ago by Candés, Tao [1] and Donoho [2] and today

it is one of the hottest topics in signal processing with

several applications ranging from image processing [3] to data

gathering in sensor networks [4]. Contrary to other compres-

sion paradigms [5][6], CS theory states that compression and

sampling can be merged and carried out at the same time

and, moreover, that a signal can be recovered from a few

random measurements by using a sampling rate lower than

that imposed by the Shannon-Nyquist theorem [7].

More formally, CS theory states that a sparse signal can be

reconstructed from a small number of linear measurements by

solving a l1-based convex optimization problem [8].

This is the usual manner to introduce CS theory; however,

whilst words such as “compression” and “linear” are in the dic-

tionary of undergraduate students, this is not necessarily true

for “l1-norm” and “convex optimization”. Therefore, when CS

is introduced in first level courses on signal processing, it

appears as a kind of “magic tool” (it is not a case that l1-

magic [9] is the name of one of the most used tool).

This paper has its own origin exactly from this problem and

one of its aim is to introduce CS by means of mathematical

concepts that are familiar to undergraduate students of first

level courses in signal processing.

More precisely, after a formal statement of the CS problem

in Sec. II, we will show in Sec. III that a CS problem can

be casted as an impulse response estimation problem. This

new interpretation lead us to a new framework described

in Secs.IV and V that is able to solve the CS problem.

Moreover, in Sec. VI we show that the proposed framework

allows to re-obtain some theoretical results of CS in a simple

manner. In particular, we prove that, in the case of a randomly

generated sensing matrix, reconstruction probability depends

on the kurtosis of the distribution used for its generation.

With the aim of validating the proposed framework, a few

simulation results are provided in Sec. VII. Finally, some

concluding remarks and future works are drawn in Sec. VIII.

II. THE CS PROBLEM

According to [7] a real-valued, one-dimensional, discrete-

time signal is represented as a N × 1 column vector x with

elements xi ∈ R and i ∈ [1, N ]; moreover, a signal is defined

K-sparse if it is a linear combination of K basis vectors, i.e.

if a vector h with only K << N nonzero components and a

N×N matrix Ψ, named basis matrix, exist such that x = Ψh.

Let us assume that a second M × N matrix Φ, named

measurement matrix, is used to obtain the measurement vector

yM = Φx = Θh (1)

where Θ = ΦΨ. When M < N the vector yM can be seen

as a compressed representation of x and it is referred to as

compressed vector.

With the above notation, a CS problem consists of designing

a measurement matrix Φ and a reconstruction algorithm such

that the original/uncompressed vector x can be recovered from

the measurement/compressed vector yM .

Solving the above problem is similar to solving the linear

system y = Ax. However, CS theory addresses the case where

the number of measurements is less than the number of un-

known parameters showing that a unique solution exists in the

case of K-sparse signals and properly designed measurement

matrices [10]. In particular, good measurement matrices Φ can

be obtained when elements φij are normally distributed [11].

In this case the following lower bound for M exists [4],[12]:

M > 2K log(
N

K
) (2)

In this paper eq.(2) will be re-obtained in a simpler way and

the above bound will be generalized to any other distribution

for which the kurtosis is known.

Throughout the paper we will indicate with Ω the index set

of the nonzero elements of h, i.e. what is named the “support”

in the algebra theory; moreover, we will indicate with zΩ the

elements of a vector z corresponding to the support Ω and with

zΩ̄ the elements in the complementary set (note that hΩ̄ = 0).

Finally, we will indicate with ΘΩ the M ×K matrix obtained

considering the columns of Θ belonging to Ω.

Hereafter we assume that the following hypotheses hold:

H1) φij are i.i.d. random variables of whatever distribution

with zero mean (µφ = 0) and unit variance (σ2
φ = 1);

H2) x is a K-sparse vector;

H3) The matrix Ψ is normalized so that
∑N

i=1 ψ
2
ij = 1 ∀j;

H4) The matrix ΘΩ has full column rank.

It is worth noting that H4 is a necessary condition for

several CS algorithms [10].

Note that if the support Ω of h is known and ΘΩ has

full column rank than the solution of the CS problem is

straightforward. In fact, considering that the elements of hΩ̄

are all zeros, the linear system yM = Θh can be rewritten as

yM = ΘΩhΩ. Moreover, under the hypothesis that ΘΩ has
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Fig. 1. Impulse response estimation by means of cross-correlation.

full column rank, the system yM = ΘΩhΩ admits a unique

solution, i.e. hΩ = Θ+
ΩyM where Θ+

Ω = (ΘT
ΩΘΩ)

−1ΘT
Ω is the

pseudo-inverse of ΘΩ [13]. Thus, considering that hΩ̄ = 0,

it is possible to reconstruct h from hΩ. Finally, the original

signal x can be recovered as x = Ψh.

As a consequence we can state that a CS problem is solved

if there exists a reconstruction algorithm able to recover the

support Ω of h from the measurement vector yM .

III. BASIC IDEA

With the aim of introducing our basic idea we consider

a discrete time-invariant linear system whose finite impulse

response is h[n] with n ∈ [0, ...N − 1]. In this case the input

signal, u[n], and the output signal, y[n], are related by the

convolution product

y[n] = u[n] ∗ h[n] =
N−1
∑

m=0

h[m]u[n−m]. (3)

According to the CS notation, the signal h[n] will be

represented by the vector h whose elements coincide with the

set {hn = h[n− 1] : n ∈ [1, ..., N ]}.

By introducing the cross-correlation function between two

signals x[n] and y[n] of the same length L as

Rxy[n] =
1

L

L−1
∑

i=0

x[i]y[i− n] (4)

it is straightforward to prove that the following equation holds:

Ryu[n] =
1

L

L−1
∑

i=0

N−1
∑

m=0

h[m]u[i−m]u[i− n] (5)

In particular, let us consider a linear system excited by

an ergodic random process with an ideal impulse-like au-

tocorrelation Ruu[n] = δ[n]. In this case, for sufficiently

large values of L, the cross-correlation function becomes

Ryu[n] ≈ h[n] ∗Ruu[n] = h[n] ∗ δ[n] = h[n].
The previous result can be exploited as shown in Fig.1 to

obtain the impulse response of a linear system [14].

In practice, ideal impulse-like autocorrelation functions can-

not be achieved for signals of finite length L. Nevertheless,

with a proper choice of L, the difference between Ryu[n] and

h[n] can be small enough to distinguish between zero and non-

zero values of h[n] (and thus to obtain the support Ω). This

observation leads us to a new framework able to solve the CS

problem that can be explained with the aid of Fig.2.

Note that, with the exception of a decimator block in front

of the cross-correlation, the upper part of the scheme in Fig.2
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Fig. 2. Proposed framework.

coincides with Fig.1. As a consequence, it can be argued that

it is possible to obtain h from the cross-correlation Ry′u[n].

However, differently from the previous scenario, in this case

the estimation exploits a sub-sampled signal, i.e. the output of

the decimator block, which can be expressed as

y′[n] =

{

y[n] if (n+ 1) ≡ 0 (mod N)

0 otherwise
(6)

where mod is the modulo operation (i.e. the remainder of the

Euclidean division).

Let us assume that h is related to a K-sparse vector x

by x = Ψh and that the input signal u[n] is a sequence of

L = M × N values obtained from the elements θij of the

matrix Θ = ΦΨ so that u[iN − j] = θij .

In this case, the sub-sampled signal y′[n] defined by eq.(6)

has only M non-zero values, i.e.

yi = y[i ·N − 1] with i ∈ [1, ...,M ], (7)

that can be represented by the M × 1 vector yM . Moreover,

it is possible to prove that

yM = Θh = Φx (8)

Since eq.(8) coincides with eq.(1), the problem of recovery

of x from yM in our framework is exactly the CS problem

stated in Section II. Considering that x can be straightforward

obtained from h as x = Ψh, we can state that a CS problem

is solved if h can be obtained from yM .

In the next Sections we will show how it is possible to

recover h (and its support Ω) using the cross-correlation

Ry′u[n] =
1

L

L−1
∑

i=0

y′[i]u[i− n] (9)

It is important to note that the signal y′[n] can be obtained

directly by zero-padding the vector yM , as shown in the

bottom part of Fig.2. As a consequence, it is not necessary

to know h to evaluate Ry′u[n], i.e. the blocks surrounded by

the dashed box in Fig.2 are not necessary at all.

Summarizing, we propose to recover the original vector x in

two phases: in the first phase we evaluate Ry′u[n] directly from

yM and Θ; thus, in the second phase, Ry′u[n] is exploited to

obtain Ω, h and finally x.
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IV. PRELIMINARY RESULTS

Now it will be shown that the support Ω can be easily

obtained from the cross-correlation Ry′u[n]. To this end, let us

introduce the vector X whose entries are X[n] = L ·Ry′u[n]
with n ∈ [1, ..., N ].

In the Appendix we prove the following theorem:

Theorem 1. Under the assumptions H1, H2, H3 in Sec.II and

for sufficiently large values of N , the values X[n] are normally

distributed with

X[n] ∼
{

N (0,MEh) if n /∈ Ω

N (Mhn,MEhn) if n ∈ Ω
(10)

where Eh=
∑N

m=1 h
2
m, Ehn=Eh + (κ− 2)h2n and κ=

E(θ4

ij)

σ4

θ

is the kurtosis of the distribution of the random variable θij .

From Theorem 1 it follows that

Theorem 2. For sufficiently large values of M , the support

Ω of h coincides, with high probability, with the index set of

the first K maximum absolute values of X.

Proof: Note that the theorem provides a method for

obtaining the support Ω and is proven if all absolute values

of XΩ are greater than the absolute values of XΩ̄. The last

statement can be roughly proven as follows: from eq.(10) it

follows that E(X[n]) is zero when n /∈ Ω and it is proportional

to M when n ∈ Ω; therefore, by increasing M , we can

arbitrarily increase the “distance” between the values of X

that are in Ω and those that are in Ω̄; in particular, we can

choose M so that all absolute values of XΩ will be greater

than the absolute values of XΩ̄.

More formally, considering w ∈ XΩ and z ∈ XΩ̄, from

Theorem 1 it is possible to prove that

P (|w|> |z|) ≥erf
( √

M · |hn|
√

2(Eh + Ehn)

)

(11)

where erf(x) = 2√
π

∫ x

0
e−t2dt and n∈Ω (i.e. |hn| > 0). As

a consequence, we can state that, for sufficiently large values

of M , any element of XΩ will be greater (in modulus) than

any element of XΩ̄ with high probability, i.e. at least equal

to erf

( √
M ·|hn|√

2(Eh+Ehn)

)

. For the sake of space, the proof of

eq.(11) is here omitted.

V. RECONSTRUCTION ALGORITHM

A reconstruction algorithm based on the previous results is

shown in Fig.3. Note that it can be divided in two phases.

In the first phase (steps 1-4) the matrix Θ and the vector

yM are used in order to calculate Ry′u. In practice, this

phase implements the zero-padding operator and the cross-

correlation in Fig.2. In the first step of the second phase (step

5), the support Ω is obtained accordingly to Theorem 2, i.e.

considering the first K maximum absolute values of X; finally,

the other steps (6-10) are used to recover the original vector x

following the procedure already discussed at the end of Sec. II.

Reconstruction Algorithm:
Inputs:

• measurement/compressed vector yM

• Matrix Φ, Ψ

Output: original/uncompressed vector x.
Phase I:

1) Calculate the matrix Θ = ΦΨ
2) Generate the signal u[n] so that u[iN − j] = θij ;
3) Generate the signal y′[n] from yM through zero-padding (see

eqs.(6) and (7));
4) Calculate Ry′u[n] where n ∈ [1, N ] on the basis of eq.(9);

Phase II:

5) Find the index set Ω corresponding to the first K maximum
values of |X[n]| = L|Ry′u[n]|;

6) Extract the sub-matrix ΘΩ from Θ;
7) Calculate the pseudo-inverse Θ+

Ω
= (ΘT

Ω
ΘΩ)

−1ΘT
Ω

;

8) Calculate the vector hΩ = Θ+

Ω
yM ;

9) Reconstruct the vector h from hΩ and Ω;
10) Reconstruct the original signal x as x = Ψh.

Fig. 3. Reconstruction Algorithm for the proposed framework

The reader could observe that the proposed algorithm

has some similarities with the OMP algorithm [15], and its

derivatives, e.g. the CoSaMP algorithm [16]. In fact, all these

algorithms exploit the same input signal X = ΘTyM . For

lack of space, we cannot further discuss this aspect.

Finally note that the proposed algorithm allows a perfect

reconstruction when the following condition holds

min
n∈Ω

{|X[n]|} > max
n∈Ω̄

{|X[n]|} (12)

VI. ANALYTICAL RESULTS

Eq.(12) is verified with a probability Pc, henceforward

named reconstruction probability, that in general depends on

M,N,K, κ and h. However, it is possible to argue that

eq.(12) is verified with a not too small probability only if

E(minn∈Ω{|X[n]|})>E(maxn∈Ω̄{|X[n]|}), where E() is the

expectation operator. This can be formally stated as follows:

Theorem 3. Let

D = E(min
n∈Ω

{|X[n]|})− E(max
n∈Ω̄

{|X[n]|}) (13)

there exists a monotone non-decreasing function F : R →
[0, 1] such that

Pc = F (D) (14)

Proof: Let us introduce a random variable q such that

min
n∈Ω

{|X[n]|} −max
n∈Ω̄

{|X[n]|} = D − q. (15)

Note that the probability that eq.(12) is satisfied can be

expressed as Pc = P (q < D) = Fq(D), where Fq is the

cumulative distribution function of the random variable q.

We recall that a cumulative distribution function is always a

monotone non-decreasing function with values in the interval

[0, 1], thus the theorem is proven for F = Fq .

Theorem 4. Let D and F be defined as in Theorem 3 and

M∗ =
(
√

2 log(N −K)Eh +
√

2 log(K)E′
h)

2

h2min

(16)
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where hmin = minn∈Ω{|hn|} and E′
h = minn∈Ω{Ehn} then

when M ≥M∗ we have D > 0 and

Pc ≥ F
(

hmin ·
(

M −
√
M ·M∗

))

. (17)

Proof: We recall that the expected maximum of m
samples of a standard normal variable x ∼ N (0, 1) is bounded

by
√

2 log(m) [17]. As a consequence the expected minimum

and maximum of m samples of a normal variable y=µ+σx ∼
N(µ, σ2) lie in the interval (µ−σ

√

2 log(m), µ+σ
√

2 log(m)).
We can use the above result to bound E(maxn∈Ω̄ |X[n]|)

and E(minn∈Ω |X[n]|). In particular, from Theorem 1 we have

XΩ̄[n] ∼ N(0,
√
MEh), and therefore we can state that

E(max
n∈Ω̄

|X[n]|) <
√

2 log(N −K)MEh. (18)

Now let us consider E(minn∈Ω |X[n]|). From eq.(16) it

follows that M∗ > 2 log(K)E′

h

h2

min

≥ 2 log(K)Ehn

h2
n

; thus when M ≥
M∗ we have h2nM

2 ≥ h2nM ·M∗ > 2M log(K)Ehn, i.e.

|hn|M −
√

2 log(K)MEhn > 0 ∀n ∈ Ω (19)

In this case we have E(minn∈Ω |X[n]|) >
minn∈Ω{|hn|M −

√

2 log(K)MEhn} and considering

that the right term is an increasing function of |hn|, we can

write

E(min
n∈Ω

|X[n]|) > hminM −
√

2 log(K)ME′
h (20)

By combining eqs.(18) and (20) and using the definition of

M∗ provided in eq.(16) we have

E(min
n∈Ω

|X[n]|)− E(max
n∈Ω̄

|X[n]|) > hmin

(

M −
√
M ·M∗

)

(21)

i.e. D > hmin ·
(

M −
√
M ·M∗

)

. Consequently, when M ≥
M∗ we have D > 0. Finally, on the basis of Theorem 3, F
is a non-decreasing function and thus we have Pc = F (D) ≥
F
(

hmin · (M −
√
M ·M∗)

)

, i.e. eq.(17).

On the basis of Theorem 4, we can state that Pc is an

increasing function of M and a decreasing function of M∗.

A lower bound for M∗ is given by the following theorem.

Theorem 5. Let M∗ defined by eq.(16), it holds

M∗ > 2K[log(N −K) + log(K)] + 2(κ− 2) log(K) (22)

Proof: From eq.(16), considering that (
√

α+
√

β)2 > α+β,

we have

M∗ >
(2 log(N −K)Eh + 2 log(K)E′

h)

h2min

Finally, by recalling that E′
h = Eh + (κ − 2)h2min and

considering that Eh ≥ Kh2min, we can write

M∗ > 2K[log(N −K) + log(K)] + 2(κ− 2) log(K).

The previous bound generalizes other lower bounds known

in CS theory. For instance, considering that the last term in

eq.(22) can be neglected for small values of κ and introducing

the quantity a = log(N−K)+log(K)

log(N
K

)
, eq.(22) can be rewritten as

M∗ > 2aK log(N
K
). Finally, considering that a ≈ 1 when

N >> K, we have M∗ > 2K log(N
K
), that is the same lower

bound in eq.(2).

From the previous results it follows that

Theorem 6. For a fixed value of M , the reconstruction

probability Pc is greater for distributions with lower kurtosis.

Proof: From eq.(17) we can state that the reconstruction

probability Pc increases when M∗ decreases. Moreover, from

Theorem 5 we can state that M∗ will be lower for lower values

of κ. Accordingly, Pc is a decreasing function of κ.

The previous theorem justifies why commonly used distribu-

tions in CS-related problems are Gaussian distribution (κ = 3)

and Bernoulli distribution (κ = 1).

Simulation results provided in the next Section confirm the

above statements.

VII. SIMULATION RESULTS

In this Section a few simulation results are provided with

the aim of validating the proposed framework and the related

analytical results. For the sake of simplicity we assume that

Ψ is an unitary matrix of dimension N and xi ∈ {−1, 0,+1}.

We start by considering the case φij ∼ N(0, 1). In partic-

ular, in Table I we report a few experimental values of the

reconstruction probability Pc achieved for different values of

K ∈ {5, 10, 15} and N ∈ {500, 1000} and averaged over

10000 trials.

c = M
M∗

N K M Pc

0.5

500 5 76 0.2308
500 10 167 0.1320

1000 5 81 0.1943
1000 10 178 0.1055
1000 15 281 0.0736

1

500 5 151 0.9364
500 10 333 0.9313

1000 5 162 0.9360
1000 10 356 0.9334
1000 15 562 0.9265

1.5

500 5 227 0.9981
500 10 500 0.9983

1000 5 243 0.9985
1000 10 534 0.9988
1000 15 843 0.9987

TABLE I
EXPERIMENTAL RECONSTRUCTION PROBABILITY Pc FOR DIFFERENT

VALUES OF K , N AND M WHEN φij ∼ N(0, 1) AND xi ∈ {−1, 0, 1}.

As it is possible to observe, according to Theorem 4,

reconstruction probability Pc starts to be high when M =M∗

(i.e. c = M
M∗

= 1) and increases for greater values of M (i.e.

c = 1.5). Our simulation results show that this result is true

also if different distributions are considered.

Now we wish to investigate the impact of the kurtosis on

the reconstruction probability. With this aim, reconstruction

probabilities obtained with different distributions but with the

same number of measurements M have been considered and

are shown in Tab. II.

As it is possible to observe from Tab. II, according to

Theorem 6, for a fixed value of M the distribution with

lower kurtosis (i.e. Bernoulli) allows to obtain a greater

reconstruction probability.
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N K M Pc,Normal

(κ = 3)
Pc,Bernoulli

(κ = 1)
Pc,Laplace

(κ = 6)
500 5 151 0.9364 0.9765 0.8400

500 10 333 0.9313 0.9574 0.8727

1000 5 162 0.9360 0.9789 0.8397

1000 10 356 0.9334 0.9632 0.8793

TABLE II
RECONSTRUCTION PROBABILITIES FOR DIFFERENT DISTRIBUTIONS.

VIII. CONCLUSIONS

We presented a new framework capable of justifying some

results of CS theory with mathematical concepts familiar to

undergraduate students. Moreover, we proved that reconstruc-

tion probability depends on the kurtosis of the distribution

used for generating the sensing matrix. As future work, an

analytical expression for the reconstruction probability will be

derived and we will extend the framework to the case hΩ̄ 6= 0.

APPENDIX A: PROOF OF THEOREM 1

Due to the fact that y′[n] is a sub-sampled signal, Ry′u can

be obtained from eq.(5) by replacing the index i with kN :

Ry′u[n] =
1

L

N−1
∑

m=0

M
∑

k=1

h[m]u[kN −m]u[kN − n] (23)

Thus, X[n] = LRy′u[n] =
N
∑

m=1

hmwmn (24)

where wmn =
M
∑

k=1

u[kN −m]u[kN − n] =
M
∑

k=1

θkmθkn. (25)

Now we want to calculate mean and variance of wmn

and thus of X[n] under the hypotheses H1-H3 introduced

in Sec. II. Firstly, we prove that θkm =
∑N

i=1 φkiψim is a

random variable with zero mean and unit variance. In fact,

by considering that the expectation operator E() is a linear

operator and that var(
∑

i xi) =
∑

i var(xi) when xi are i.i.d.

random variables, it follows that

E(θkm) =
N
∑

i=1

E(φki)ψim = 0 (see H1) (26)

var(θkm) =
N
∑

i=1

var(φki)ψ
2
im = 1 (see H1 and H3) (27)

The previous results can be used to obtain mean and

variance of the random variable wmn defined in eq.(25);

however, the cases m 6= n and m = n must be distinguished:

• when m 6= n, considering that θkm and θkn are i.i.d., we

have E(wmn) = 0 and var(wmn) =M ;

• when m = n, by observing that wnn =
∑M

m=1 θ
2
mn and

using the fact that E(θ2mn) = var(θmn)+[E(θmn)]
2 = 1,

we have E(wnn) =M .

Furthermore, using the property var(θ) = E(θ2) −
[E(θ)]2, we have var(θ2mn) = E(θ4mn) − [E(θ2mn)]

2 =
κ − 1, where κ = E(θ4mn)/[E(θ2mn)]

2 is the kurtosis of

the distribution of the random variable θmn, and thus

var(wnn) = var(
∑

m

θ2mn) =Mvar(θ2mn) =M(κ−1) (28)

Finally, from eq.(24) it follows that

E(X[n]) = hnE(wnn) +
∑

m 6=n

hmE(wmn) =Mhn (29)

var(X[n]) = h2nvar(wnn) +
∑

m 6=n

h2mvar(wmn) =

= h2nM(κ− 1) +M
∑

m 6=n

h2m =MEhn(30)

Considering that hmwmn are independent random variables

and that N is usually a large value, we can use the Central

Limit Theorem [18] to state that X[n] =
∑N

m=1 hmwmn is a

normal variable. Thus, using the previous results, we have

X[n] ∼ N (Mhn,MEhn) (31)

Finally, note that the previous equation is valid for all n, thus

in particular for n ∈ Ω, but can be simplified as X[n] ∼
N (0,MEh) when hn = 0 (i.e. for all n /∈ Ω).
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