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Abstract—We present an encoder-decoder deep neural network
that solves non-Lambertian intrinsic light field decomposition,
where we recover all three intrinsic components: albedo, shading,
and specularity. We learn a sparse set of features from 3D
epipolar volumes and use them in separate decoder pathways to
reconstruct intrinsic light fields. While being trained on synthetic
data generated with Blender, our model still generalizes to real
world examples captured with a Lytro Illum plenoptic camera.
The proposed method outperforms state-of-the-art approaches
for single images and achieves competitive accuracy with recent
modeling methods for light fields.

I. INTRODUCTION

Intrinsic images are a well-known computer vision problem
that has been extensively studied over decades. The first
solution was introduced by Barrow and Tenenbaum [1] in
1978, where the input image is decomposed into reflectance
and illumination components. Since then, numerous methods
were proposed, based on modeling and data-driven techniques.

Most of the intrinsic image algorithms follow the Lamber-
tian assumption that a scene is composed of objects with only
diffuse or body reflection. In this case, the input image is
decomposed into the albedo (or reflectance) component which
represents surface color/texture and the shading component
that represents intensity changes due to geometry and illumi-
nation.

In the real world, there are few materials that are purely
Lambertian. Most of them exhibit some amount of specularity.
Thus, intrinsic images for non-Lambertian objects aims to
decompose the input into albedo, shading, and specularity
components [2]. Because the specularity component is view
dependent it can hardly be estimated from a single image,
thus additional information is required.

Light fields appear to be a good source of information that
can be used to improve intrinsic image decomposition [3]-[5].
Existing methods rely on modeling of intrinsic components
based on their physical properties. Although these approaches
give impressive results, they require lots of assumptions and
are accurate up-to-the models used.

Contributions. With the growing popularity of data-driven
methods, our work focuses on intrinsic light field decomposi-
tion and disparity estimation with an encoder-decoder end-to-
end deep neural network. These tasks can benefit from each
other in a sense that estimated disparity contains information
about the geometry of the scene, which, is strongly related
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Fig. 1. Our network estimates disparity and decomposes the crosshair-shaped
subset of 17 views from the input light field into intrinsic components: albedo,
shading, and specularity. Figure illustrates the center view result on real world
flowers dataset [6] taken with Lytro Illum plenoptic camera. The light field
size is 9X 9x 376 x 541 x 3, with the estimated disparity range [—1.19, 0.57].

to shading and specularity. Moreover, albedo, shading, and
specular flow are useful cues for disparity estimation.

Similar to Alperovich et al. [7] where the authors only
recover disparity, diffuse and specular components, we use
horizontal and vertical 3D volumes as an input to our network.
Contrary to [7] we perform full intrinsic decomposition, design
an architecture that is capable of processing twice larger
patches as an input and introduce skip connections from
the encoder to corresponding decoder parts that improve the
reconstruction quality of decoders. We substitute 3D con-
volutions with a sequence of 2D that acting in spatial and
angular domains. This design choice decreases the number of
parameters in the network and speeds up the training process.
As in [7], our network can process light fields where a ground
truth is not available.
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We evaluate our network on synthetic data generated with
Blender and real world examples taken with Lytro Illum
plenoptic camera. We perform comparisons with a single
image CNN-based algorithm and recent methods for light
fields.

II. RELATED WORK

The problem of disparity estimation benefits a lot from
the multiple views available in a light field, for an overview
of various algorithms we refer to the recent work of Johannsen
et al. [8].

Deep learning approaches lead to significant improvement
in this task. Heber et al. [9] recover a 4D depth field from the
light field using CNN followed by convex optimization to re-
fine point-wise predictions from the deep network. Srinivasan
et al. [6] synthesize a 4D light field from a single image with
two neural networks, one estimates the disparity and renders
Lambertian light field, and the second one predicts occluding
rays and models non-Lambertian effects. Alperovich et al. [7]
jointly solve disparity estimation and reflection separation
tasks with a fully-convolutional encoder-decoder network.

For an overview of intrinsic decomposition algorithms we
refer to the work of Bonneel et al. [10] where the authors
discuss priors used for modeling intrinsic components.

Among the deep learning approaches Narihira et al. [11] was
the first to introduce CNN for recovering relative lightness that
was trained on human judgments on relative reflectance [12].
Later they developed a regression CNN-based model that
predicts albedo and shading components. Shi et al. [13]
introduced a mirror-like, U-shaped architecture that solves
non-Lambertian intrinsic decomposition from a single image.
Janner et al. [14] developed a self-supervised (RIN) model
which predicts reflectance, shape, and lighting conditions
given a single image.

IIT. UNDERLYING MODEL

For the purpose of this paper, we understand a 4D light
field as the radiance function sampled on a space of rays
that form regular grid of sub-aperture views. This 4D ray
space is parameterized by the two intersection points of
each ray r with two different planes. The image plane )
is parameterized in p = (x,y) coordinates, while the focus
plane 11 is parameterized in ¢ = (s, t) coordinates. Both planes
are parallel to each other. Thus, the 4D light field is a func-
tion L : O xII — R with (x,y, s,t) — L(z,y, s,t) = L(p, c).
In practice, it often has several components, i.e. takes values
in RGB color space R3. By convention, the view with focal
coordinate ¢ = O is called the center (or reference) view.
Most disparity estimation algorithms only compute depth for
this specific view.

According to the dichromatic reflection model [15], the
total radiance I of the reflected light is the sum of two
independent parts, the radiance I; of the reflected light at the
surface body and radiance I, at interface. More precisely,

I(A’n’l’v) :Id(A’n7l7v)+Is(A7n7l7v)’ (1)
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where A is the wavelength of the light, n is the surface
normal, v is the viewing direction, and I direction to the
light source. In particular, it is a complex function of the local
surface geometry.

As discussed in detail in [16], we consider the case where
the diffuse component is modeled as Lambertian, and can
rewrite (1) for a light field L as

L(’U) = md(na l)cd(A) +ms (na l’ U)Cs()‘)a (2)

where mg , is a geometric scale factor, cq ¢ is the spectral
power distribution. In short, we can represent a light field as a
sum of diffuse and specular I component. By further breaking
down diffuse component into albedo A and shading S, we
arrive at the intrinsic light fields

L(r) = A(r)S(r) + H(r) 3)

model described by Alperovich and Goldluecke [4].

We can see that according to our model, specular and diffuse
components behave quite differently in EPIs [17]. While the
albedo and shading have constant color along the projections
of 3D points given by disparity, specular reflection moves in
a non-rigid way and depends on local surface geometry [18],
[19]. Based on the definitions and observations above, we can
now start to build our network.

IV. NETWORK ARCHITECTURE

Similar to the previous work [7], [13], [14] we use a U-
shaped mirror-like architecture [20] to build the network, see
Figure 2 for the detailed explanation of the network structure.
The key idea is to extract a small number of features, 3.8% of
the input patch size, and then upscale them back to the input
light field, intrinsic components and disparity.

The input to the network is a pair of 9x96x96x 3 horizontal
and vertical 3D slices of the light field which have an overlap
of 32 pixels. Every patch passes 12 convolution layers where
each layer is represented by the residual block, see Figure 3.
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Fig. 2. Encoder-decoder residual network with 12 convolution layers in
the encoder part (green rectangle) and corresponding up-sampling layers in
the decoder (blue rectangle). The network has four 3D decoding pathways:
albedo, shading, specularity and light field itself, and one 2D pathway
for disparity. We illustrate skip connections with lines. The arrow in the
last decoding layer for intrinsic components illustrates that albedo, shading
and specularity shares their features to better cope with modeling cost (3).
Numbers describe the output dimension of a tensor after each layer. Block
color corresponds to its kind, for instance for encoder and decoder pathways
purple is spatial downscaling, blue is dimension preserving, and orange is
angular downscaling.
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Fig. 3. Example residual block of the network. After batch normalization, we
pass the output tensor through two pathways. The right one keeps the input
tensor or performs 3D convolution if it needs to be resampled. The left one
performs angular and spatial 2D convolutions followed by ELU layer. The
output tensor is the sum of these two pathways.

After batch normalization we duplicate the output tensor
and successively apply 2D convolution on the EPI followed
by 2D spatial convolution to one copy. Then we pass the
output through the Exponential Linear Units (ELU) layer [21].
Another copy is kept unchanged or resampled to have the same
shape as the first copy. The output of the block is the sum of
two copies.

Based on strides used, the residual blocks are divided into
three groups: spatial downscaling, angular downscaling and
dimensions preserving, see Figure 2.

To improve the accuracy of decomposition we add skip
connections [13], [14] by copying encoder features to the
corresponding outputs of the decoder layers. Then we pass
a new tensor through a 1 X 1 x 1 convolution to preserve its
original shape. Note that there are no skip connections in the
pure autoencoder.

The decoder consists of five pathways. To ensure that
intrinsic components follow the model (3), we concatenate
their features in the last decoding layer and then up-sample to
the output albedo, shading, and specularity.

We use scale invariant loss [11], [22] for albedo A and shad-
ing S to reduce the ambiguity caused by the product of those
components in the intrinsic decomposition, see model (3). For
all other decoders, we use standard MSE loss function.

V. EXPERIMENTS

Most of the training data is generated with the Blender
addon provided by [26]. We produced 400 light fields of
size 9 X 9 x 512 x 512 x 3, which results in a total of 78,400
training patches. Since our network uses only horizontal and
vertical slices, we render high-quality ground truth only for a
crosshair-shaped subset of 17 views. For unsupervised train-
ing, we use the light field benchmark [26] with only disparity
ground truth available and real world light fields [6], [27]-[29]
without any ground truth.

We train the network with batch size 10 for 160K iterations
starting from learning rate 10~* and dropping it every 40K
iterations till it reaches 10~°. The evaluation of the trained
network takes about 11s for 3D pathway and 2.6s for 2D on
a machine with an Intel(R) Core i7-4790 CPU 3.60GHz and
an NVIDIA GeForce GTX 1080Ti.

Since there are no algorithms for light fields that jointly
solve intrinsic decomposition and disparity estimation, we
perform separate comparisons for these tasks.
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Fig. 4. Intrinsic decomposition for real world 9 x 9 x 434 x 625 x 3
light field captured with a Lytro Illum plenoptic camera. Rows from top to
bottom: albedo, shading, and specularity. Note, that method by Garces et
al. [3] performs only albedo/shading decomposition. We use space for the
specular image to illustrate the center view. The single image CNN [13] does
not perform decomposition for the background, thus it appears black in the
visualization. We conclude that our method copes well with soft shadows
and highly specular materials. Also it preserves all the structure compared to
over-smoothed results by [5].

For intrinsic decomposition, we select three methods for
comparison. The first one is a modeling approach for light
fields proposed by Alperovich et al. [5], where the authors
model priors according to their physical properties. The second
one is proposed by Garces et al. [3], where the authors
decompose the input light field into albedo and shading
components with extended Retinex theory. The third one is a
single image CNN-based method by Shi et al [13], where the
authors develop a deep network for non-Lambertian intrinsic
decomposition. See Figures 4, 1 for results on the real world
data, and Figure 5 for evaluations on the test data.

Note that the method by Garces et al. [3] uses the whole
light field as an input, thus we perform comparisons only
for the real world data captured with a Lytro Illum plenoptic
camera, where we have all 81 views available. Alperovich et
al. [5] use horizontal and vertical slices of the light field, and
Shi et al. [13] use single image plus object mask, all this
information is available in our synthetic data.

For quantitative evaluations we select three error metrics:
local mean-squared error (LMSE) [2] computed patch-wise
with the size of 40% of the image size, global mean-squared
error (GMSE) [5], which is similar to LMSE, but computed
for the whole image, and DSSIM index [30] which is defined
as (1 — SSIM)/2 and measures structure dissimilarity. See
Table 8 for numerical evaluations on the center view over 9
test data sets.

For disparity estimation, we select four algorithms for com-
parison. The recent deep network by Alperovich et al. [7] that
jointly decomposes input light field into diffuse and specular
components and estimates the disparity. Johannsen et al. [24]
employ dictionary learning to recover disparity. Strecke et
al. [23] estimate disparity with occlusion-aware focal stack
symmetry with additional normals refinement. The last one is
the method proposed by Wanner and Goldluecke [25] which
is based on orientation of EPI patches. We use the standard
MSE metric for the comparisons, see Figure 6 for visual and
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Fig. 5. Comparison on two synthetic data sets generated with Blender. The light field size is 9 X 9 X 512 x 512 X 3. We conclude that proposed network
outputs more accurate albedo and shading components compared to single image CNN [13]. Compared to the modeling method by [5], the albedo is much
sharper and specularity is more intense. The shading component produced by our method still contains some texture compared to shading by [5], also we do
not train the network on examples with strong cast shadows, thus shadows are not fully removed from albedo. Due to ambiguity between albedo and shading
we observe the difference between scaling of the ground truth and decomposition results.

quantitative evaluations.

We use overlapping patches to compute the decomposition
as the weighted average, assuming that pixels that are close to
the patch center are more accurate. Thus we exclude border
pixels from the final results.

VI. CONCLUSIONS

We propose a novel architecture that outperforms recent
methods for disparity estimation and intrinsic decomposition.
The key idea is to replace 3D convolutions with the sequence
of 2D angular and spatial convolutions, which decreases the
number of parameters in the network. The resulting architec-
ture is more computationally efficient and allows larger patch
sized compared to [7]. As the result, we are able to train the
network with four 3D and one 2D decoders.

From our experiments, we conclude that with a larger patch
size the disparity estimation is much more accurate, especially
on the large specular surfaces, see Figure 6.

While ground truth is available only for the synthetic scenes,
the proposed architecture still generalizes well to the real
world light fields, it successfully removes most of the shading
from the albedo component and correctly detects and separates
specularity.

Given the difficulty of the tasks, our network achieves
superior performance, but there is plenty of work ahead. The
estimated shading component contains some structure from
the albedo, thus additional post-processing might be needed.
Also, our current architecture can deal only with soft shadows,
because training scenes are illuminated with environmental
maps, that results in soft lighting.
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Fig. 6. Ground truth and estimated disparity for three synthetic data sets generated with Blender. The disparity range is [—2.12,2.51]. Compared to [7] our
method improves disparity estimation in large specular regions. We explain this behavior by increase of input patch size. Other methods also fail to estimate
correct disparity on specular and structureless surfaces. Although we use similar loss function for the disparity, due to the skip connections, the new disparity
is sharper than in [7]. Numerical evaluations support qualitative results, MSE error is smaller than for the competing methods.
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Fig. 7. Disparity estimation for the real world light field from Figure 4. The estimated dlspanty range is [—2.44, 1.14]. This example is pamcularly difficult
for disparity estimation because it has highly specular object. Based on visual comparison we conclude that our method produces similar quality results
compared to CNN-based and modeling approaches. Method by Strecke et al. [23] produces visually more accurate results on the saxophone.
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