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Abstract—The direction of arrival (DOA) estimation of the
sound sources has been a popular signal processing research topic
due to its widespread applications. Using spherical microphone
array, DOA estimation can be applied in the spherical harmonic
(SH) domain without any spatial ambiguity. However, the en-
vironment reverberation and noise can degrade the estimation
performance. In this paper, we propose a novel iterative stochastic
maximum likelihood (ML) algorithm for DOA estimation of
multiple sound sources in the presence of spatially nonuniform
noise in the SH domain. The main idea of the proposed algorithm
is considering the general model of the received signal in the
SH domain. We reduce the complexity of the ML estimation by
breaking it down to two separate problems: noise parameters
and DOA estimation problems. Simulation results indicate that
the proposed algorithm improves the robustness of estimation,
i.e, the root mean square error, by at least 7 dB compared to the
recent methods in the reverberant and noisy environments.

Index Terms—Direction of Arrival Estimation, Spherical Mi-
crophone Array, Spherical Harmonics

I. INTRODUCTION

The direction of arrival (DOA) estimation of sound sources

has been a popular signal processing research topic due to

its widespread applications, including speech enhancement,

dereverbration, and robot audition. The spherical microphone

arrays have attracted more attention recently. The spatial

symmetry of spherical arrays helps us to capture the 3-D

information of sound sources without spatial ambiguity. The

main advantage of analysis in the spherical harmonic (SH)

domain is the decoupling of frequency-dependent and angular-

dependent components [1].

Traditional DOA estimation methods can be divided into

three categories: time-delay [2], beamforming [3], and sub-

space based methods [4], [5]; one of the famous and popular

methods of the third category is the multiple signal classifi-

cation (MUSIC) [4] and estimation of signal parameters via

rotational invariance techniques (ESPRIT) [5]. Sound source

reverberation causes correlated and coherent acoustic signals

which degrades the performance of the traditional methods

specially spectral based ones. Although in [6], [7], MUSIC

and ESPRIT are applied in the SH domain, they lost accuracy

in high reverberation.

A DOA estimation method is proposed based on indepen-

dent component analysis (ICA) by using directional sparsity

of sound sources in the series of [8]–[10]. In [8], the unmixing

matrix was extracted by applying the ICA model to the SH

domain signals and then DOA estimated by comparing its

columns with the dictionary of possible plane-wave source

directions steering vectors. Since this method suffers from low

resolution, by combining ICA and sparse recovery methods its

performance can be improved [9]. In [10], authors improve the

convergence of sparse recovery solver by exploiting spatial

location of the sound sources as a prime information. In

all of these methods, DOA estimation strongly degrades in

reverberant and noisy environment because the authors do not

consider the noise in the their methods.

In this paper, first the received signal model is investigated

in the SH domain. Then considering the general model of

the received signal in the SH domain, an iterative stochastic

maximum likelihood (ML) of DOA estimation is proposed for

multiple sources in the presence of spatially nonuniform noise.

The proposed ML estimator require an exhaustive search in the

joint DOA and noise parameters space. In order to reduce the

complexity, we break down the ML estimation to two separate

problems. In the first problem, we estimate noise parameters

while fixing the DOAs and in the second problem we obtain

the DOAs from the estimated noise parameters. Simulation

results indicate that the proposed algorithm shows at least 7 dB

and 10 dB improvement in robustness in terms of root mean

square error (RMSE) compared to the best results of MUSIC

and ICA algorithms in the reverberant and noisy environments,

respectively.

II. SIGNAL MODEL

In this section, a model for the received signal in the SH

domain is presented using the approach provided in [11].

Consider a spherical array of I identical omnidirectional

microphones, where the i’th microphone located at Cartesian

coordinates of ri = [r sin θi cosφi, r sin θi sinφi, r cos θi]
T ,

where (r, θi, φi) denote the corresponding spherical coordi-

nates. The notations describing the spherical geometry are
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Fig. 1. The notations describing the spherical geometry

illustrated in Fig. 1. Assume that there exist L plain-wave

source signals where l’th source impinging from the angular

direction Ψl
Δ
= (θ′l, φ

′
l) with wave-number k. The received

signal at the i’th microphone from the l’th source at time

t is sl (t− τi(Ψl)), where τi(Ψl) is the propagation delay

of the l’th source between the reference and i’th micro-

phone. Considering narrow-band signal assumption of sound

source, we have sl(t − τi(Ψl)) = e−jkT
l risl(t), where kl =

−[k sin θ′l cosφ
′
l, k sin θ′l sinφ

′
l, k cos θ

′
l]
T is the wave-vector

corresponding to the l’th plane-wave. The received signal at

i’th microphone at time t is [12]:

xi(t) =

L∑
l=1

e−jkT
l risl(t) + ni(t), 1 ≤ i ≤ I, (1)

where ni(t) is the additive white Gaussian noise with zero

mean and variance σ2 of the i’th microphone. On the other

hand, by solving the wave equation in the spherical coordinates

[13] and applying a proper truncation order N [14], the sound

field can be approximated inside a sphere of radius r̂ centered

at the origin, as follows [8]:

e−jkT
l ri =

N∑
n=0

n∑
m=−n

bn(kr)Y
m
n (Ψl)Y

m
n (Φi), ‖ ri ‖≤ r̂,

(2)

where bn(kr)
Δ
= 4πjnjn(kr) is the mode strength of order n

for open sphere, j =
√−1, jn is the spherical Bessel function,

Φi
Δ
= (θi, φi), r̂ = 2N

ekl
, e is the Eulers number and Y m

n (·) is

the real-valued spherical harmonic of order n and degree m
defined as:

Y m
l (θ, φ) =

√
2l + 1

4π

(l − |m|)!
(l + |m|)! P

|m|
l (cos θ)

×
⎧⎨
⎩

(−1)m
√
2 cos(mφ) form > 0
1 form = 0

(−1)m
√
2 sin(|m|φ) form < 0

.

(3)

where Pm
n is the associated Legendre function of order n and

degree m. Rewriting (2) in the matrix form, we have

A(Ψ) = Y(Φ)B(kr)YT (Ψ), (4)

where Φ
Δ
= {Φi, i = 1, . . . , I} and Y(Ψ) is the source

spherical harmonics matrix of size L× (N + 1)2 and defined

as

Y(Ψ)
Δ
= [y(Ψ1)

T ,y(Ψ2)
T , . . . ,y(ΨL)

T ]T (5)

where

y(Ψl) = [Y 0
0 (Ψl), Y

−1
1 (Ψl), Y

0
1 (Ψl), Y

1
1 (Ψl), . . . , Y

N
N (Ψl)],

the array spherical harmonics matrix, Y(Φ), is the size of

I × (N + 1)2 and defined similar to (5) and mode strength

matrix, B(kr), is the size of (N +1)2× (N +1)2 and defined

as follows:

B(kr)
Δ
= diag

{
b0(kr), b1(kr), b1(kr), b1(kr), . . . , bN (kr)

}
.

The spherical harmonics decomposition of the received

signal can be obtained [15]:

xn,m(t) =

∫
Ω∈S2

x(t)Y m
n (Ω) dΩ

∼=
I∑

i=1

αixi(t)Y
m
n (Φi), (6)

where Ω = (θ, φ) and xn,m(t) are the coefficients of the

spherical harmonics decomposition and αi is the real-valued

weighting parameter corresponding to the i’th microphone

and obtained according to the spatial sampling scheme [16].

Equation (6) can be represented in a matrix form as:

xnm(t) = Y(Φ)TΣx(t), (7)

where Σ
Δ
= diag

{
α1, α2, . . . , αI

}
and xnm(t) is defined as

xnm(t)
Δ
= [x0,0(t), x1,−1(t), x1,0(t), x1,1(t), . . . , xN,N (t)]T .

(8)

Considering (6), the spherical harmonics are orthonormal as

represented in [16]

Y(Φ)TΣY(Φ) = I, (9)

where I is (N + 1)2 × (N + 1)2 identity matrix. After some

mathematical manipulation, the received signal model in the

SH domain can be obtained:

b(t) = Y(Ψ)Ts(t) + z(t), t = 1, . . . , Ns (10)

where b(t) is named higher-order ambisonic (HOA) signal

vector of the order-N , z(t) is the noise vector in the SH

domain and Ns is the number of snapshots. b(t) and z(t)
are obtained as follows:

z(t) = Γn(t) and b(t) = Γx(t) (11)

where Γ
�
= B−1(kr)YH(Φ)Σ. According to (11), the HOA

signal is a linear instantaneous mixture of the sources’ signals.

Transforming the received signals is performed by applying

the time domain encoding filter, Γ, to the received signal in

the SH domain. It must be noticed that the transformation

filter, Γ, is known for the given array.
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III. ROBUST ITERATIVE STOCHASTIC ML ESTIMATION OF

DOA

In this section, a new ML DOA estimation of multiple sound

sources in the SH domain is proposed by considering unknown

and stochastic sources. It must be noted that the additive noise

in (10) is spatially nonuniform white noise.
Suppose that the additive noise vector and sources’ signals

to be zero mean Gaussian with the covariance matrix Rn =
Q = diag{q1, q2, . . . , qP } and Rs = σ2

sIL, respectively,

where IL is the L × L identity matrix. Also the noise is

assumed to be independent of the sound sources. The set of

unknown parameters are defined as Ω
Δ
= {Ψ,Q}. Thus, the

log-likelihood function of the HOA signal will be

L(b;Ω) = −Ns

2
ln |Σ| − 1

2

Ns∑
t=1

b(t)TΣ(Ω)−1b(t), (12)

where Σ(Ω) = σ2
sY(Ψ)Y(Ψ)T + Q is the HOA signal

covariance matrix. Thus, the ML estimator of Ω can be written

as:

Ω̂ = argmax
Ω

L(b;Ω). (13)

Minimizing the objective function in (13), requires an

exhaustive search in (P + 2L)-dimension space. This search

procedure is time consuming. Thus, it is not practical. Ac-

cording to [17], to simplify this optimization problem, the ML

estimation of Ω is broken down to two separate problems for

estimation of Ψ and Q. After parameters separation, the opti-

mization problem is solved iteratively as following. First, we

fix Ψ in (12) with an initial value and derive the ML estimation

of Q. Then, the estimation of Ψ is obtained considering the

estimated Q̂. After that, we estimate Q with the estimated

Ψ̂ from the last iteration. We follow this procedure until the

objective function, ΔL = L(b; [Ω̂]i)− L(b; [Ω̂]i−1) be lower

than a certain threshold, Tthr, where [Ω̂]i and [Ω̂]i−1 denote

estimated parameters in the iteration i and i− 1.
The ML estimation of the noise vector elements with fixed

Ψ can be described as:

q̂p = argmin
qp

Ns ln(|Σ(Q)|) +
Ns∑
t=1

b(t)TΣ(Q)−1b(t). (14)

Differentiating the above objective function with respect to qp
and doing some algebraic simplifications (See Appendix for

derivation procedure), q̂p is obtained as:

q̂p =
Ns

(
1− eTp Πep

)
∑Ns

t=1

(
bT (t)Σ−1

p

)2 , 1 ≤ p ≤ P, (15)

where ep and Σ−1
p is the p’th column of IP and Σ(Ω)−1,

respectively and

Π
Δ
= Ỹ

(
1

σ2
s

IL + ỸT Ỹ

)−1

ỸT . (16)

where Ỹ
Δ
= Q−1/2Y(Ψ). After the estimation of Q, the ML

estimation of Ψ can be obtained as

Ψ̂ = argmin
Ψ

Ns ln(|Σ(Ψ)|) +
Ns∑
t=1

b(t)TΣ(Ψ)−1b(t). (17)

To simplify the objective function in (17), the matrix determi-

nant lemma gives the following equality

det(Σ(Ψ)) = det(Q) det(IL + ỸT Ỹ). (18)

Using (18), the optimization problem in (17) can be restated

as:

Ψ̂ = argmin
Ψ

Ns ln
(
det(Q) det(IL + ỸT Ỹ)

)

+

Ns∑
t=1

b̃T (t)Πb̃(t)

= argmin
Ψ

Ns ln
(
det(IL + ỸT Ỹ)

)
+ tr

{
S̃bΠ

}
, (19)

where b̃(t)
Δ
= Q−1/2b(t) and S̃b =

∑Ns

t=1 b̃(t)b̃
T (t). The

optimization problem in (19) can be solved by Nelder-Mead

direct search method [18]. Algorithm 1 summarizes the it-

erative stochastic ML (ISML) estimator considering spatially

nonuniform noise.

Algorithm 1 ISML algorithm

Input: b(t), 1 ≤ t ≤ Ns, the t-th vector of observation.

Output: [Ψ̂], the vector of the estimated sources DOA.

1: Initialization: Initialize [Ψ̂]0 randomly,
[
Q̂
]0

=

diag{1, 1, . . . , 1} ∈ RP×P and i = 1.

2: while ΔL > Tthr do
3: Obtain

[
Q̂
]i

using
[
Q̂
]i−1

and (15).

4: Obtain [Ψ̂]i using
[
Q̂
]i

, [Ψ̂]i−1 and (19).

5: [Ω̂]i ←
{
[Ψ̂]i,

[
Q̂
]i}

6: Compute L(b; [Ω̂]i) and then ΔL.

7: end while
8: return [Ψ̂]

IV. SIMULATION

In this section, the proposed ISML algorithm is evaluated

and compared with the traditional standard MUSIC algorithm

[4] and the recently proposed ICA based method [8] through

various scenarios. In the conducted simulations, the SMA is

an open array of radius 15 cm consisting 12 omnidirectional

microphones. The microphone array is located in the coordi-

nates (1.5 m, 6 m, 8 m) of a room of size 3 m × 8 m × 10 m.

Three sound sources are located at 2 m distance of the array.

Angular locations of these sources are reported in Table I. The

sources play the speech signals with duration about one second

which are sampled at 16 KHz. The signal to reverberation ratio

(SRR) is almost equal to -3.5 dB and the room reverberation

time (RT60) is approximately 350 ms. The room’s impulse

response between the sources and the array is obtained using

MCRoomSim, a multichannel room acoustics simulator [19].

Microphone signals and additive white Gaussian noise are

filtered with the HOA encoding filters which result in 2nd

order HOA signals and SH domain noise, respectively. The
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TABLE I
SOUND SOURCES DIRECTION

Source number 1 2 3

(φ◦, θ◦) (40,50) (70,-50) (110,10)
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SNR [dB]
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100

101

R
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]
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Fig. 2. Comparing RMSE of estimating φ (degree) in the ISML algorithm
versus ICA and MUSIC methods.

length of the HOA encoding filters is 512 and designed such

that its output SNR is maximized. Then, the HOA signals are

filtered by bandpass filters with the pass-band of 500 to 3500

Hz. The optimization in (19) is performed by Nelder-Mead

direct search method [18].

In Figs. 2 and 3, the average RMSE of the estimating φ and

θ for ISML, ICA and MUSIC versus SNR are presented. The

average of 100 different realizations are used to obtain each

simulated point. As it can be seen, the proposed algorithm

significantly improves RMSE compared to MUSIC and ICA.

Performance of the ICA method is highly dropped in low

SNR values due to not considering the environmental noise.

In higher SNR values, the ICA assumption becomes closer

to the reality, resulting in the ICA outperforms the MUSIC.

The proposed algorithm exhibits a better performance because

of regarding the spatially nonuniform noise model and rever-

beration. The signal is assumed to be independent and non-

Gaussian for the ICA algorithm. But due to reverberation, both

0 5 10 15 20 25 30 35 40
SNR [dB]

10-1

100

101

R
M

SE
 [d

eg
]

MUSIC
ICA
ISML

Fig. 3. Comparing RMSE of estimating θ (degree) in the ISML algorithm
versus ICA and MUSIC methods.
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Fig. 4. Cross correlation between the first and the second HOA signals

assumptions are not realistic for DOA estimation in the SH

domain. In order to show that the distribution of the HOA

signal is Gaussian, Kolmogorov-Smirnov hypothesis test is

used. The test result, with the 5% significance level, confirms

that the HOA signals come from a Gaussian distribution.

Also, the cross-correlation coefficient between the first and the

second normalized HOA signals are calculated as ρ = E{b1b2}
which is equal to 0.834. For better visualization, the cross-

correlation between the first and second HOA signals is plotted

in Fig. 4. Considering the signal model matches to the HOA

domain, the ISML can achieve lower RMSE of estimating φ
and θ. Referring to this results, we can say that the proposed

algorithm shows at least 10 dB improvement in robustness

compared to the best results of MUSIC and ICA methods in

the noisy environments.

To examine the robustness of the ISML in the reverberant

environments, the average RMSE of the estimating φ and θ for

100 different realizations in 40 dB SNR versus different RT60

are reported in Table II and III. In the lower RT60s, ICA and

ISML almost have the same performance. Because the ICA

method does not consider the correlation in the HOA signals

(referring to Fig. 4), its RMSE grows by increasing the RT60.

Also, the MUSIC algorithm shows acceptable performance in

the lower RT60 and degrades as RT60 increases. According

to Tables II and III, the proposed algorithm shows at least 7

dB improvement in robustness compared to the best results of

MUSIC and ICA methods in the reverberant environments as

it was in the noisy environment.

V. CONCLUSION

In this paper, considering the general model of the received

signal in the SH domain, we proposed an iterative stochastic

ML estimation of DOA of multiple sources in the presence of

spatially nonuniform noise. In order to reduce the complexity

of the ML estimation, we break it down to two separate

problems: noise parameters and DOA estimation problems. In

the first problem, noise parameters is estimated while fixing

the DOAs and in the second problem the DOAs from the

estimated noise parameters is obtained. Simulation results

demonstrated that the proposed algorithm shows at least 7dB

and 10dB better robustness in terms of RMSE compared to
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TABLE II
RMSE ESTIMATING φ (DEGREE) IN 40 DB SNR VERSUS DIFFERENT

RT60S

RT60 [sec] ISML ICA MUSIC

0.110 0.201 0.220 1.100
0.241 0.284 0.722 1.421
0.301 0.311 1.092 1.565
0.411 0.347 2.698 1.582
0.650 0.422 2.806 1.696
0.799 0.476 2.555 2.640

TABLE III
RMSE ESTIMATING θ (DEGREE) IN 40 DB SNR VERSUS DIFFERENT

RT60S

RT60 [sec] ISML ICA MUSIC

0.110 0.187 0.181 0.908
0.241 0.257 0.502 1.077
0.301 0.297 0.876 1.577
0.411 0.354 1.476 2.386
0.650 0.419 1.887 2.515
0.799 0.469 2.213 2.850

the MUSIC and ICA methods in the reverberant and noisy

environments, respectively. Analyzing the convergence of the

proposed algorithm and deriving the Cramer-Rao Bound for

the received signal model in the SH domain is a part of our

future work.

VI. APPENDIX

A. Derivation of (15)

Differentiating the objective function in (14) with respect to

qp and using the equality ∂Σ
∂qp

= epe
T
p we have:

Nstr

{
Σ−1 ∂Σ

∂qp

}
−
∑Ns

t=1
b(t)TΣ−1 ∂Σ

∂qp
Σ−1b(t) =

Nstr
{
Σ−1epe

T
p

}−
∑Ns

t=1
b(t)TΣ−1epe

T
p Σ

−1b(t) =

Nse
T
p Σ

−1ep −
∑Ns

t=1

(
b(t)TΣ−1ep

)2
= 0, (20)

where eTp Σ
−1ep and Σ−1ep are denoting the (p, p)-th

element and p-th column of matrix Σ−1, respectively. Using

the Woodburry matrix identity, inverse of Σ can be found as:

Σ−1 = Q−1 −Q−1YT
(
IL +YQ−1YT

)−1
YQ−1. (21)

So eTp Σ
−1ep can be simplified as follows:

[
Σ−1

]
pp

=
1

qp

(
1− eTp Πep

)
, (22)

with:

Π
Δ
= ỸT

(
IL + ỸỸT

)−1

Ỹ. (23)

Therefore, by substituting equation (22) into the last term of

(20), qp estimation will be:

q̂p =
Ns

(
1− eTp Πep

)
∑Ns

t=1

(
b(t)TΣ−1

p

)2 , 1 ≤ p ≤ P. (24)
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