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Abstract—Image quality assessment is an important field in 
different computer vision applications. A plethora of metrics has 
been proposed in the literature to answer this request. In this 
paper, we propose an image quality framework without reference 
based on selection of saliency patches and Convolutional Neural 
Network. The idea is here to not consider all patches of the 
distorted image but rather some of them, which are considered as 
the more perceptually relevant and thus impact more the Mean 
Opinion Score of the image. To do that, we first compute the 
saliency map of the distorted image. A scanpath prediction 
method, that aims to reproduce the visual behavior, is then 
applied to select the more relevant patches. A Convolutional 
Neural Network model is finally used to predict the quality score. 
Its input is the selected patches, while its output is the predicted 
Mean Opinion Score. The proposed was evaluated using four 
well-known datasets (LIVE-P2, TID 2008, TID 2013 and CSIQ). 
The results obtained show its efficiency. 

Keywords—Image quality; CNN model; Saliency; Scanpath 
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I.  INTRODUCTION 
Due its importance in several computer vision applications, 

image quality domain became a growing domain [1]. A 
plethora of methods has been proposed in the literature. We 
can dissociate three approaches depending on the availability 
of the reference image. When the latter is accessible, Full 
Reference (FR) metrics can be used, while No Reference (NR) 
metrics are used to predict the quality without the reference 
image. The third approach, often called Reduced Reference 
(RR), is an alternative solution under the assumption that only 
some characteristics of the reference image are available.  

In this study, we focus on 2D-IQM and we propose a CNN-
based blind image quality framework using the saliency 
information. Neural-based methods have been previously used 
to predict the quality. In [2], several selected features were 
selected and combined using a Multi Layer Perceptron (MLP). 
In [3], a CNN-based blind image quality has been proposed. 
The image is first decomposed into patches and used as inputs 
to the CNN model. During the learning step, patches of a given 
image have the same target and it corresponds to the subjective 
score (often called MOS: Mean Opinion Score) of the whole 
image. In [4], a multi-task CNN model is described. The goal 
was to predict the quality and the degradation type. In [5], a 
weight computed for each patch was used to estimate the 

global quality. In [6], the authors discussed about the utilization 
of deep learning for blind image quality assessment.  

The above-cited studies considered all patches of the image 
and affected to each of them the same MOS. Here, we propose 
a framework to predict the quality of a given distorted image 
without reference by considering only the more relevant 
patches according to the saliency information. The idea 
developed here is that the global quality of the image is more 
impacted by saliency regions than the others. So, for a given 
degraded image, we first compute the corresponding saliency 
map and relevant patches is then selected by applying a 
scanpath prediction method. The latter aims to reproduce the 
behavior of human when the image is analyzed. Selected 
patches are normalized and used as inputs to a CNN model. 
The quality of the image is finally given by averaging the 
predicted scores of the selected patches.  

Our paper is organized as follows: In Section 2, the 
proposed method is described. In Section 3, we present the 
obtained results in terms of correlation with the subjective 
judgments. The last section is dedicated to the conclusion and 
the perspectives. 

II. PROPOSED METHOD 
 

Fig. 1. Flowchart of the proposed method 

The flowchart of the proposed method is presented in Fig. 
1. For a given distorted image, we first extract specific patches 
of size 32x32, selected according to the saliency information. 
These patches are then normalized (mean and standard 
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deviation) and used as inputs to our CNN model. The global 
estimation quality is then given by the mean of the local-
predicted scores. Each of these steps is described in this 
section. 

A. Selection of Relevant Patches 
Visual attention plays an important role in image analysis 

domain and has been exploited in several applications (image 
retrieval [7], indoor localization [8] and so on). The detected 
regions, so-called saliency regions, represent the more 
attractive zones in the image and thus play an important role in 
the comprehension of the image. Here, we propose to exploit 
this information by extracting relevant patches and use it as 
inputs to a CNN model. The underlying idea developed here is 
that those regions impact highly the subjective judgment and 
thus the overall quality [9,10]. So, this procedure permits to not 
consider patches that have a limited impact in terms of quality. 

In this study, we used the method proposed in [18] to select 
the more relevant patches. The latter predicts visual scanpaths 
of observers based on a saliency model and biases (saccade 
amplitude and saccade orientation biases). Each position of a 
given scanpath represents one of the more relevant saliency 
regions. Fig. 2.d presents a scanpath obtained for the Fig. 2.a. 
The used method needs two inputs: an image and its 
corresponding saliency.  

The Saliency map can be obtained by environmental 
characteristics (color, intensity, orientation, etc.) or can be 
conducted by human observers’ deliberate intentions according 
to some a priori information. The former approach is called 
“Bottom-up” approach, while the latter is called “Top-down” 
approach. As the quality evaluation is often driven by the 
environmental characteristics without prior information (which 
is the case in this study), a Bottom up method has been used.  

One of the first bottom-up models has been developed by 
Itti et al. [11]. The authors proposed to combine different maps 
using low-level attributes (intensity, color and orientation). In 
[12], a more complex method based on some Human Visual 
System (HVS) characteristics has been described. The saliency 
map is performed through different perceptual steps 
(perceptual color space transformationà Contrast Sensitivity 
Function filtering [13] à Cortex transform [14] à masking 
effect à center surround filtering). Other simpler methods 
have been also proposed. In [15], the authors proposed to 
determine the saliency of a given image in the Fourier domain. 
The residual spectrum of the image is first computed and 
subtracted from its filtered version. The saliency map is then 
obtained by the inverse Fourier transform.  In this work, the 
Graph-Based Visual Saliency (GBVS) method [16], which is 
one of the best methods in the state-of-the-art [17], has been 
used.  

In Fig. 2, we show a distorted image (Fig. 2.a), the 
corresponding saliency map (Fig. 2.b) and the predicted 
scanpath (Fig. 2.d) where the blue points represent the 
predicted relevant positions. As we can see, the selected 
positions are localized on the more attractive regions of the 
image (lighthouse and houses) and are thus in accordance with 
our perception.  

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. Examples of selected patches: a) Distorted image, b) its saliency map 
c) highlight image and d) the predicted scanpath. 

For each predicted position, a patch of size 32x32 is 
extracted and normalized (i.e. local mean=0 and local standard 
deviation=1, filter size = 3x3).  

B. Architecture of our CNN Model 
The selected normalized-patches are then used as inputs to 

the proposed CNN model, presented in Fig. 3 (32x32x1 à 
26x26x16 à 13x13x16 à 7x7x16 à 1x1x48 à 400 à 1). 
There are two convolutional layers, two pooling layers, one 
fully connected layer and one output layer. Both convolutional 
layers are composed of 16 kernels (16 feature maps) of size 
7x7. The first pooling layer is a 2x2 min pooling without 
overlap  (i.e. stride=2), while the second pooling layer is 
composed of three pooling steps (min – max – mean) without 
overlap. For the latter, the obtained feature maps are pooled to 
16 max, 16 min and 16 mean (i.e. each map is pooled to one 
max, one min and one mean values). This structure permits to 
better describe the distribution of the kernel maps. The values 
obtained are then concatenated to form a vector of size 48 (i.e. 
16 * 3) and used as inputs to the first fully connected layer of 
size 400, followed by a dropout step (0.5). The last layer is a 
logistic regression layer with one output (predicted MOS). As 
activation function, the well-known ReLu (Rectified Linear 
Units) has been used after the first fully connected layer. 

The parameters fixed during the training step are listed 
below (the training-validation-test decomposition is presented 
in section III.A): 
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• Start-learning rate: 0.01 

• Start-momentum: 0.9 

• End-momentum: 0.5 

• Optimization method: Stochastic Gradient Descent 
(SGD) 

• Test interval (i.e the number of iterations between 
two evaluation using the validation set): 1000 

• Batch size: 64 

• Toolbox: Caffe [19]. 

 

 
Fig. 3. Architecture of our CNN model 

C. Used Databases 
Four well-known datasets were used to evaluate our 

method: 

• LIVE image database - Phase 2 (LIVE2-P2) [20]: this 
database is composed of 5 degradation types (JPEG2000, 
JPEG, White Noise, Gaussian Blur and Fast Fading) 
applied to 29 reference images (779 degraded images). For 
each degraded image, the DMOS (Differential Mean 
Opinion Score) is provided. 

• TID 2008 (TID08) [21]: constituted of 17 degradation 
types applied to 25 original images, this dataset is 
composed of 1700 degraded images and its corresponding 
MOS (Mean Opinion Score). 

• TID 2013 (TID13) [22]: this dataset is an extended version 
of the previous one.  More degradation types were 
considered (24 instead of 17) with more degraded images 

per degradation type (125 instead of 100). So, a total of 
3000 degraded images and its corresponding MOS have 
been provided. 

• CSIQ [23]: six degradation types are here considered. 866 
degraded images are obtained from 30 pristine images. For 
each of them, the DMOS are given. 

 

III. EXPERIMENTAL RESULTS 

A. Evaluation Protocols 
In order to evaluate the proposed method, two evaluation 

protocols have been applied: 

1.  Protocol 1: in this protocol, only LIVE-P2 database was 
used. The latter is decomposed into training-validation 
(60% for the training and 20% for the validation) and test 
(20%) sets randomly without overlap. This procedure was 
repeated 10 times (cross validation). The mean 
performances are then shown.  

2.  Protocol 2: the objective was here to evaluate the 
generalization ability of our method. For that, we applied 
the cross-dataset validation method by using the whole 
LIVE-P2 dataset to train our CNN model and the others 
(TID08, TID13 and CSIQ) as test sets. 

For both protocols, the Pearson (PCC) and the Spearman 
(SROCC) coefficient correlations were used to evaluate the 
capacity of our method to predict subjective judgments. The 
best performance is represented in bold on grey background. 

 

B. Evaluation 
1) Protocol 1: LIVE-P2 dataset 

TABLE I.  PROTOCOL 1: OBTAINED CORRELATIONS FOR LIVE-P2 
DATASET 

LIVE-P2 
 PCC SROCC 

 
FR-
IQM 

PSNR 0.856 0.866 
SSIM [24] 0.906 0.913 
FSIM [25] 0.960 0.964 
DeepQA [26] 0.981 0.982 

 
 

NR-
IQM 

DIIVINE [27] 0.917 0.916 
BLIINDS-II [28] 0.930 0.931 
BRISQUE [29] 0.942 0.940 
CORNIA [30] 0.935 0.942 
IQA-CNN [3] 0.953 0.956 
IQA-CNN+ [4] 0.953 0.953 
IQA-CNN++ [4] 0.950 0.950 
SOM [31] 0.962 0.964 
CNN-Prewitt 
[32] 

0.966 0.958 

Image-wise 
CNN [6] 

0.963 0.964 

Our method 0.988 0.989 
 

In this section, we present the results obtained for the 
Protocol 1. The number of patches used during the training is 
up to 42 000, while the number of patches used during the test 
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is three times less. Table I shows the obtained PCC and 
SROCC correlations. As we can see, our method outperformed 
all the compared metrics, especially the CNN-based methods. 
Note that for the latter methods, the image is decomposed into 
patches and all of them (with and without a perceptual 
weighting step) are considered. So, this result highlights the 
relevance to focus only on the relevant regions of the image. 

 

2) Protocol 2: Cross Dataset Validation 
 

In this section, the results obtained for the protocol 2 are 
presented. The number of patches used during the training-
validation step is up to 53 000 (i.e. all patches of the LIVE-P2 
dataset). Tables II-IV show respectively the performances 
obtained for TID08, TID13 and CSIQ datasets. 

For the TID08 dataset, our method outperformed all the NR 
metrics and some of the FR measures. The best PCC value was 
obtained by the FSIM metric, while our method achieved the 
best SROCC value. Comparing to the CNN-based methods, the 
performances are close but less patches were used in our case. 

TABLE II.  PROTOCOL 2: OBTAINED CORRELATIONS FOR TID08 
DATASET 

TID 2008 
 PCC SROCC 

 
FR-IQM 

PSNR 0.776 0.901 
SSIM 0.817 0.903 
FSIM 0.952 0.954 

 
 
NR-IQM 

CORNIA 0.890 0.880 
IQA-CNN 0.903 0.920 
IQA-CNN+ 0.893 0.912 
IQA-CNN++ 0.895 0.906 
SOM  0.899 0.923 
Our method 0.91 0.956 

 

For the TID13 dataset, our method outperformed also all 
the compared NR-IQM and is competitive with the DeepQA, 
which is a FR metric. 

TABLE III.  PROTOCOL 2: OBTAINED CORRELATIONS FOR TID13 
DATASET 

TID 2013 
 PCC SROCC 

 
FR-IQM 

PSNR 0.706 0.636 
SSIM 0.691 0.775 
DeepQA 0.946 0.940 

 
 
NR-IQM 

CORNIA 0.613 0.549 
BRISQUE 0.651 0.572 
Image-wise 
CNN 

0.802 0.800 

Our method 0.925 0.955 
 

For the CSIQ dataset, we obtained the best results whatever 
the kind of metrics (NR and FR). Comparing to the CNN-based 
methods, the achieved PCC and SROCC values are higher than 
those metrics. 

TABLE IV.  PROTOCOL 2: OBTAINED CORRELATIONS  FOR CSIQ 
DATASET 

CSIQ 
 PCC SROCC 

FR-
IQM 

PSNR 0.800 0.806 
SSIM 0.861 0.876 
FSIM 0.961 0.962 
DeepQA 0.964 0.960 

 
 

NR-
IQM 

BRISQUE 0.797 0.756 
CORNIA 0.914 0.899 
IQA-CNN 0.903 0.923 
IQA-CNN+ 0.910 0.918 
IQA-CNN++ 0.928 0.936 
Our method 0.968 0.973 

 

In Fig. 4, we show the predicted MOS vs. MOS for the test 
datasets (TID08, TID13 and CSIQ). The scatter plot of the data 
represents visually the correlation between the subjective 
scores and its predicted version (objective scores). The red 
curve corresponds to the logistic function obtained by 
interpolating the objective scores. As we can see, the scatter 
distributions are consistent, especially for the CSIQ dataset for 
which the best performances were obtained. 

 

IV. CONCLUSION 
In this paper, we proposed a method to estimate the quality 

of 2D distorted images by selecting some relevant patches as 
inputs to a CNN model. The selection of these patches was 
realized using a visual scanpath prediction method that exploits 
the saliency information. The results obtained are compared to 
the state-of-the-art and show the relevance of our approach. As 
perspective, we will try to use different saliency methods and 
compare the performance variations according to this input. 
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Fig. 4. Predicted MOS vs MOS: a) TID08, TID13 and c) CSIQ datasets
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