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ABSTRACT

In this work, we propose an architecture named DualCon-
vGRU Network to overcome the INTERPEECH 2017 Com-
ParE Snoring sub-challenge. In this network, we devise two
new models: the Dual Convolutional Layer, which is ap-
plied to a spectrogram to extract features; and the Channel
Slice Model, which reprocess the extracted features. The
first amalgamates an ensemble of information collected from
two types of convolutional operations, with differing kernel
dimension on the frequency axis and equal dimension on
the time axis. Secondly, the dependencies within the con-
volutional layer channel axes are learnt, by feeding channel
slices into a Gated Recurrent Unit (GRU) layer. By taking
this approach, convolutional layers can be connected to se-
quential models without the use of fully connected layers.
Compared with other state-of-the-art methods delivered to
INTERPEECH 2017 ComParE Snoring sub-challenge, our
method ranks 5th on performance of test data. Moreover,
we are the only competitor to train a deep learning model
solely on the provided training data, except for Baseline. The
performance of our model exceeds the baseline too much.

Index Terms— DualConvGRU Network, Dual Convolu-
tional Layers, Channel Slice Model

1. INTRODUCTION

Snoring, whilst potentially being embarrassing for a snorer,
can have greater health implications such that correct iden-
tification of its cause can save lives. For example, Obstruc-
tive Sleep Apnea (OSA), a disorder that results from blockage
of upper airways during sleep, can provoke damaging short
and long-term effects to a person’s well-being and can even
cause death [1, 2, 3]. Snoring is a commonplace symptom of
OSA and, in light of this, the INTERSPEECH 2017 ComParE
Snoring sub-challenge [4] presents an annotated database of
snoring audio samples, to be classified based on which re-
gion of the upper airways’ vibrations cause the specific type
of snoring that is heard. Precise determination of the Velum
(V), Oropharyngeal (O), Tongue (T) or Epiglottis (E) is im-

portant, as it provides a first step to successful medical pre-
vention of OSA [5, 6, 7].

In order to perform the classification, INTERSPEECH
have provided an acoustic feature set consisting of 6,373 fea-
tures. Having this many features is beneficial in paralinguis-
tics [8], but also exposes an algorithm to the ‘curse of di-
mensionality’ and can cause dramatic increase in computation
time. To combat this, techniques such as Principle Compo-
nent Analysis (PCA) [9, 10], feature quantisation [11, 12] and
feature selection [13, 14] are sometimes used. The alternative
option is to use End-to-End neural network models, making
use of the raw acoustic samples themselves and learning the
features. However, through the years INTERSPEECH Com-
ParE has presented data that has been sampled in-the-wild,
presenting the important challenge of class imbalance in the
data, wherein the data does not present an evenly distributed
sample set over the classes. This results in classification al-
gorithms performing well only on majority classes. Coupled
with having a large feature set, algorithms are also exposed
to over-fitting on the under-represented classes and is why
DL approaches require large annotated datasets, which par-
alinguistic corpora, such as this one, often cannot provide. It
is worth noting that this is the first year that INTERSPEECH
ComParE has provided an End-to-End DL baseline, alongside
the more typical Support Vector Machine (SVM) based ap-
proaches [4], which can be favourable when faced with small
data.

In this work, we propose an End-to-End Deep Learning
(DL) method that can address the problem of data imbalance
when learning a small portion of data. The benefit of using
DL, is that it can enable the model to learn a generalised rep-
resentation for each sample category based on an abstracted
encoding of the data that presents better comparison. This
results in strong performance on unseen data. Our contri-
butions to DL methods are threefold. Firstly, we propose
the “Dual Convolutional Layer”, which combines informa-
tion collected by two separate convolutions with equal time
axis kernel width but different frequency axis kernel specifi-
cation. Their outputs are then merged via element-wise aver-
age. Secondly, we propose the “Channel Slice Model”, which
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can be used as the connector between 2D convolutional net-
works and sequential models without needing fully connected
layers as features. In this method, we directly slice the out-
put tensor from the convolutional layer along with the channel
axis and feed it to a GRU layer. Hence, the dependency that
we wish to encode in the sequential model is channel depen-
dency, rather than traditional time dependence along inputs.
Finally, we combine these partitions together to construct the
“DualConvGRU” Network.

Through our work, we aim to accelerate the progress of
DL in sound classification tasks, even for those which con-
tain small data. In Section 2, we survey relevant audio clas-
sification work. We then describe the data processing mea-
sures taken and the “DualConvGRU” network in Section 3,
followed by a short description of data in Section 4, the re-
sults and discussion in Section 5 and finally our conclusions
and proposed further work in Section 6.

2. RELATED WORK

Due to the high dimensionality of features and the data class
imbalance, typical approaches to audio-sample classifica-
tion often involve SVM, as they are robust under these con-
straints. For example, in the sub-challenge baseline both an
End-to-End method, utilising CNN + LSTM fed with 40 ms
raw waveform chunks, and an SVM, trained on function-
als computed over Low-Level Descriptor (LLD) contours,
were tested [4]. It was found that in classifying snore au-
dio, SVM performed best. However, the quality of features
impacts the performance of the algorithm and a number of
approaches to the sub-challenge have employed their own
feature extraction. Amiriparian et al. [15] used AlexNet and
VGG19 pre-trained image recognition Convolutional Neural
Networks (CNNs) to the sample power spectrogram. The
extracted features were then fed to two dense layers in series.
They then used two SVMs, each trained on one of the two
dense layer activations, to perform the final classification. A
similar approach by Freitag et al. [16] made use of the same
model but instead used a single SVM trained on a feature sub-
set chosen through “Competitive Swarm Optimisation” [17].
Gosztolya et al. took a different approach to the challenge,
by extracting frame-level features with openSMILE [18] fol-
lowing an approach taken in the Vocalization Sub-Challenge
of ComParE 2013 [19], dividing utterances into 10 equal
length parts and averaging the features across them. They
then trained an SVM on these new features and combined
with it results obtained from a separate SVM trained on the
challenge features. In an approach that does not make use of
CNNs, Kaya & Karpov applied score level fusion between
different classifiers [20]. They proposed two new classifica-
tion methods, namely “Weighted Kernel Extreme Learning
Machine” (WKELM) to deal with class imbalances in the
data and “Weighted Kernel Partial Least Squares” (WKPLS)
regression. Their highest performance, which won the Snor-

ing sub-challenge but remains behind Amiriparian et al. who
were not official participants, came from a fusion between
KPLS, WKPLS and KELM trained with openSMILE features
and WKELM trained on novel features, extracted via Fisher
Vectors [21].

Whilst the above models performed well on their respec-
tive tasks, only the challenge baseline made use of an End-to-
End architecture.

3. METHODOLOGY

In this section, we will describe the algorithms used to deal
with data imbalance and signal padding. The architecture of
our network will then also be explained. The common ap-
proach for the INTERSPEECH ComParE 2017 participants
was to apply traditional ’handmade features’ as training data
for statistical models such as GMM and SVM. However, our
approach makes use of an End-to-End DL model and is shown
to perform comparably. It is our hope that this work will in-
spire further developments in end-to-end audio classification.

3.1. Spectrogram

To represent each signal we use spectrograms with 21.875ms
Hanning window, 50% overlap and absolute value magnitude
of each component produced by Short-Time Fourier Trans-
form (STFT). Due to the symmetry of STFT at each time step,
we employ (window size + 2)/2 discretised bands for the
frequency axis. The length of each signal is empirically re-
stricted to 2.75 s. Any signals with lower length are padded
via the proposed “Repeat Padding” algorithm, which is de-
scribed in the following section. To convert each spectrogram
to an image, we use the viridis colour map.

3.2. Reproducing Data

To overcome the data imbalance, we select more samples
from the classes with less data available on the training set.
Samples of each category are duplicated according to their
inverse count rate, such that the new corpus is comparatively
balanced on the distribution of categories. In experiments, we
only duplicate training data.

3.3. Dual Convolutional Layer

To extract spectrogram features, we propose the Dual Con-
volutional Layer, which combines information collected from
two convolutional operations. We use kernel sizes of (3, 4)
and (3, 2), and implement a stride size of (2, 2) for both.
When applied to a spectrogram image, the x and y kernel axes
are mapped to the time and frequency axes, respectively. In-
tuitively, the kernel with size of (3, 4) summarises global fre-
quency axis information, whilst the kernel with size of (3, 2)
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Fig. 1. This is the DualConvGRU architecture used in this paper. First, audio samples are converted into spectrograms. The
Dual Convolutional Layer (shaded) then takes the spectrogram 3D tensor as input. This input is processed by two convolutions,
with specifications as described in Section 3.3, and are element-wise averaged so as to create a new 3D tensor. This is repeated
three times. Next we apply a max-pooling layer and use the proposed Channel Slice model to prepare data for entry into a series
of two GRU layers. Finally, the output is computed as a softmax layer.

collects local frequency information. Different from simi-
lar methods, we restrict the time axis of the two convolu-
tions’ filters to be consistent and only consider variant infor-
mation collected along with the frequency axis. The main
reason for this decision is that we believe it is meaningless
to gather information across different patches of signals. In-
stead, the problem should be concentrated on different repre-
sentations along frequency domain of the same temporal sig-
nal segments. We can represent this convolutional operation
mathematically as Equation (1) below, where Y is the output,
F1 and F2 are two different filters, s is the stride and X is the
input image.

Y =
1

2
(F1 ∗s X + F2 ∗s X) (1)

The architecture of the Dual Convolutional Layer is
shown in the shaded region of Figure 1. Each 3D tensor
input is processed accordingly and the resultant tensors are
then merged, to create a new 3D tensor. We use a small
number of filters so that it can avert the problem of gener-
alisation for small size corpora. For the same reason, we
merge the tensors via element-wise average, as opposed to
concatenation as used in Inception Networks [22].

3.4. Channel Slice Model

Since we need to connect Dual Convolutional Layers with a
GRU layer, we propose the Channel Slice Model as an al-
ternative to common methods, such as connecting fully con-
nected embedding layers. The mechanism of this model is
simple to understand. Instead of slicing along the time axis
of signals, we directly slice the 3D tensor from Dual Convo-
lutional Layers along the channel axis. We then flatten each
feature map so that it becomes a 1D tensor, consisting of sev-
eral segments of frequency features at each time step, which
are concatenated according to time step sequence. Finally, we

intuit that there should exist some feature map dependency
across the whole sample, instead of frequency dependence
across time segments within the sample. We thus cascade
these 1D tensors so as to form a 2D tensor that can be passed
to the two GRU layers, forming the overall DualConvGRU
network as shown in Figure 1.

4. DATA DESCRIPTION

This work uses the Munich-Passau Snore Sound Corpus,
which consists of 828 snore samples, separated across the
four VOTE classes. The data is prepared into train, devel-
opment and test sets of equal size as per the Interspeech
2017 specifications (see [4] for further details). However,
the data per class is not equal, for example V class samples
dominate the distribution. Therefore, data imbalance must be
considered as is discussed in Sections 1 and 3.2.

5. EXPERIMENTS AND RESULTS

Consistent with past INTERSPEECH Paralinguistic Chal-
lenges, we use Unweighted Average Recall (UAR) as our
performance measure [23, 24, 25]. All of the models and
experiments are implemented by TensorFlow1 and Keras2.
Before experiments, we pre-process the data. First, we use
bilinear interpolation to resample each spectrogram to miti-
gate some issues from noisy representations so as to reduce
the probability of overfitting, but maintain their original di-
mensions. Then, we normalise the range of each element of
the spectrograms from 0 − 255 to 0 − 1. Each spectrogram
is computed by LibROSA3 and converted to an RGB image
by matplotlib4. We have attempted other image settings but

1https://www.tensorflow.org/
2https://keras.io/
3https://librosa.github.io/librosa/
4https://matplotlib.org/
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Method Ref Devel (UAR%) Test (UAR%)

Deep-Spectrum-SVM [15] 44.8 67.0
End-to-Evolution [16] 56.7 66.5

Fusion-Weighted-Kernel-Classifier [20] unknown 64.2
DNN-based Feature Extraction

and Classifier Combination [26] unknown 64.0
DualConvGRU+l2-regulariser / 51.7 63.8

DualConvGRU+dropout / 46.8 61.1
Baseline Functionals [4] 40.6 58.5

Baseline CNN & LSTM [4] 40.3 40.3

Table 1. This is the table that shows the results of our meth-
ods and other state-of-the-art methods in INTERSPEECH
ComParE 2017. The performance measure used in the ta-
ble is UAR (i.e. added recalls per class divided by number
of classes) in percentage. The bold method names are our
methods, with dropout and l2-regulariser respectively.

# V E O T
V 68 25 41 21
E 1 21 0 5
O 25 6 30 4
T 0 2 0 14

Table 2. Confusion matrix of the results of each category
of snores on test data, produced by DualConvGRU with l2-
regulariser (best result of this contribution). In this table, the
rows represent Actuals whereas the columns represent Pre-
dictions.

this setting performs best empirically. Next, we compare
two strategies to avert over-fitting: adding a dropout layer
of 0.5 after the output of a maxpooling layer and adding
an l2-regulariser, which only considers the convolutional
layer parameters to the objective function. For the objective
function, we use KL-Divergence. In order to tune the model
parameters, we use training data for training and development
data for validation. We choose the final parameters based on
the best validation performance during training. Afterwards,
we use the official test data to evaluate the performance of
the model. The evaluation results of our models and other
works on the same dataset are shown in Table 1. We can see
that the DualConvGRU with a l2-regulariser performs better
than with dropout on both development data and test data.
By contrast with results of other state-of-the-art methods, our
highest performing model ranks 5th on test data, with a UAR
of 63.8%.

The test data confusion matrix (Table 2) for the results
of the DualConvGRU with the l2-regulariser shows that the
performances on E and T are better than the other two cate-
gories. We believe that the V and O classes may be adversar-
ial samples, compared with other categories. For this reason,
accurate classification between these two categories may be a
worthy concern for further work.

6. CONCLUSION

In this paper, we introduced a new End-to-End neural network
model to tackle the INTERSPEECH 2017 ComParE Snoring
sub-challenge, which presents the challenge of a small size
dataset. We designed a new topology of convolutional lay-
ers which allows us to combine information from both lo-
cal and global frequency scope, named Dual Convolutional
Layers. We then provide a new strategy for connecting con-
volutional layers to sequential models, named Channel Slice
Model, which extracts channel slice data as features from
the convolutional layers. The results obtained show that our
methods present a great improvement compared with the End-
to-End challenge baseline on both the development data and
test data. Moreover, contrary to most other challenge com-
petitor methods, our approach is End-to-End and as such only
depends on the raw snore sample spectrograms, needing no
further acoustic features.

In further work, we would like to investigate what de-
pendency is actually learnt in the Channel Slice Model and
assess its performance on other datasets. Additionally, to fur-
ther improve the problem of lacking data on audio processing,
using deep learning methods, we propose to learn a generative
model to represent the hidden space of each category of sam-
ples rather than repeating data samples directly.
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