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Abstract—In network testing, identifying the cause for an ob-
served speech quality degradation is of special interest. Common
speech codec related causes to be identified are the application
of a low bitrate or the occurrence of transcoding or self-tandem.
This paper presents two comprehensible types of signal features
which enable a speech-quality-motivated bitrate detection for the
AMR-WB codec. The first type of feature is based on codec
linearity, while the second type exploits the different structure
of the fixed codebook at each bitrate. With these underlying
features, the bitrate detection is performed with high accuracy.
Since the one feature gathers information on the last applied
bitrate and the other on coding effects accumulated during the
entire transmission, this paper, additionally, provides a method
to extract information on the occurrence of self-tandem in the
network-under-test.

Index Terms—network testing, AMR-WB, bitrate, self-tandem,
listening quality

I. INTRODUCTION

When conducting speech communication network tests with
regard to listening quality, reference speech signals are trans-
mitted over a network-under-test and the received signals are
recorded. The signal pairs of reference and recorded signal
are then fed to algorithms like [1], [2], which instrumentally
determine a quality score. While it may be concluded from
these scores that speech quality is impaired, it is, however,
not directly possible to track the impairment back to specific
elements or properties of the network. Recently, efforts have
been focused on decomposing these quality scores into quality
dimensions [3] or technical causes [4] to allow for a more
detailed analysis of communication networks. In accordance
with that, this work proposes a method which is able to track
a speech quality impairment back to speech coding effects.

The majority of the recent work available in this direc-
tion focuses on the non-intrusive (without reference) codec
detection for forensic purposes [5]–[7]. Although the applied
speech codec does correlate with the perceived speech quality,
codec type detection is not of particular interest for e.g.
mobile network testing, since the speech codec is usually
fixed for the network type under test. However, since the
relevant speech codecs are adaptive regarding their bitrate
and, therefore, speech quality, identifying the bitrate does
provide useful network and quality information. Especially
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for the Adaptive Multi-Rate Wideband (AMR-WB) codec [8],
satisfactory methods providing this information still need to be
developed. Consequently, this work partly aims at developing
a reliable method for detecting the applied bitrate of the AMR-
WB codec.

Due to the context of network testing, it is possible to
develop a method which relies on the availability of the
reference signal. Therefore, additional coding effects may
be detected which cannot be directly identified from the
recorded signal. These are mainly effects caused by codec
self-tandeming (multiple applications of the same codec) or
transcoding within the network, which were proven to cause
a significant speech quality degradation [9]. Hence, this work
provides a method to both detect the bitrate and the presence
of self-tandem scenarios for the AMR-WB codec. A high level
block diagram of the system to be discussed is given in Fig. 1.

Network

Reference-based Reference-free

Reference Recording

Feature extraction

Bitrate/tandem classification

Fig. 1. High level block diagram of the proposed system.

This paper is structured as follows: Section II discusses
a reference-based feature, which is targeted at capturing the
characteristics of the entire transmission path. Section III then
focuses on the recorded signal only to provide a computa-
tionally efficient indicator for the last used bitrate. These two
features are combined in Section IV and V to build classifiers
for the bitrate and self-tandem scenarios, respectively.

II. CODEC LINEARITY

From a system-theoretical point of view, speech codecs
may be described as timevariant nonlinear systems [10] in
the discrete-time domain, where a linear part is described
separately from a purely nonlinear part (Fig. 2). The contri-
bution of the linear transmission to the output signal y(k) is
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x(k) h y(k)

n(k)

Fig. 2. System model of a speech codec.

modeled by the convolution of the input x(k) with the impulse
response h of the codec. Any other contribution to y(k) which
cannot be expressed through this convolution is modeled by
the signal n(k), which is simply added to the signal resulting
from the described convolution. Consequently, n(k) accounts
for the purely nonlinear transmission of the codec. Since the
correlation between a linearly and a nonlinearly transmitted
signal of same origin is generally low, n(k) may be modeled
as additive noise.

Based on this model, measures for the degree of lin-
earity/nonlinearity of a speech codec were applied for the
detection of two codec classes, where the class assignment
was in accordance with the codecs’ bitrate [10], [11]. While
these methods were used to distinguish between different
narrowband codecs, it is modified in this work to distinguish
between the bitrates of a multi-rate wideband codec (AMR-
WB).

Assuming the absence of correlation between the original
speech signal x(k) and its nonlinearly transmitted counterpart
n(k), an estimate of the linear transfer function may be
computed by

Ĥ(µ) =
Φ̂xy(µ)

Φ̂xx(µ)
, (1)

where µ is the frequency index of the Discrete-Fourier-
Transform and Φ̂xx(µ) and Φ̂xy(µ) are the estimates of the
auto and cross power spectral densities, respectively. The two
densities are separately estimated using [12]. For the compu-
tation of Φ̂xy(µ), the signals x(k) and y(k) are previously
aligned to compensate for the coding delay. Similarly to [11],
the distance measure

d =
1

Nmax −Nmin + 1

Nmax∑
µ=Nmin

(
|Ĥ(µ)|2 − 1

)2
(2)

is then defined with Nmin and Nmax corresponding to the
frequency indices approximating the lower and the upper cut-
off frequencies (50 Hz, 7000 Hz) of the codec, respectively.
Since the estimated transfer function in (1) describes how
much of the input x(k) is linearly mapped to the output y(k),
the distance measure with an allpass as reference in (2) is
interpreted as a measure for the degree of linearity/nonlinearity
of the codec.

The expected trend of the transfer functions as defined in
(1) is depicted in Fig. 3 for all available bitrates of the AMR-
WB codec. For these plots, averaging was performed over the
transfer functions computed from signal pairs based on the
training corpus of [13]. The corresponding expected values
of the distance measure (2) are given in Table I. From this
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Fig. 3. Expected per-file transfer functions according to (1) of the AMR-WB
codec for all available bitrates.

data it may be concluded that the proposed feature possesses
discriminative properties regarding the detection of the bitrates
of the AMR-WB codec.

III. CODEBOOK CORRELATION

The distance measure proposed in the previous section de-
pends on the availability of a reference signal x(k). However,
the feature is, therefore, able to incorporate information on the
entire transmission system from beginning to end. This is of
special interest if the speech is coded and decoded more than
once in the transmission system. In contrast to that, this section
focuses on a feature type which only requires a recorded signal
y(k) for its computation. Consequently, features of this type
are specifically targeted at extracting information on the codec
last applied by the transmission system. For the description of
these features, the bitrate mode index i with 1 ≤ i ≤ 9 is
introduced. The bitrate mode index is directly proportional to
the bitrate of the AMR-WB codec where i = 1 refers to the
lowest and i = 9 to the highest available bitrate.

The AMR-WB codec is based on the principles of Algebraic
Code-Excited Linear Prediction (ACELP) [14]. In accordance
with [8], each subframe u(λ) = [u1(λ), ..., u64(λ)]T of the
lower band excitation signal (50 - 6400 Hz) used for linear
predictive synthesis is, therefore, the weighted sum of an
adaptive codebook vector v(λ) and a fixed codebook vector
c(λ):

u(λ) = ĝpv(λ) + ĝcc(λ). (3)

Since the fixed codebook vector is one of Mi predefined
sequences c

(i)
j unique to the bitrate mode i with 1 ≤ j ≤Mi,

the bitrate may be detected by identifying the sequences
used for speech synthesis. A similar approach was used in
[7] to distinguish between various ACELP codecs, but not
their bitrates. For such an approach it is required to assume
ĝp � ĝc, which is approximately true for unvoiced speech, to
yield

u(λ) ≈ ĝcc(λ) ∀λ ∈ unvoiced. (4)

Hence, the preprocessing of y(k) with an algorithm for the
detection of unvoiced speech frames followed by linear pre-
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TABLE I
AVERAGE PER-FILE FEATURE VALUES AT ALL CODEC BITRATES

kbit/s 6.60 8.85 12.65 14.25 15.85 18.25 19.85 23.05 23.85

Ê{d} 0.52 0.41 0.26 0.23 0.20 0.15 0.14 0.09 0.10

Ê{ϕ(1)} 0.93 0.79 0.79 0.79 0.78 0.79 0.79 0.79 0.79

dictive analysis is assumed for the computation of the estimate
û(λ).

For sequence identfication, the correlation coefficient

ϕ
(i)
j (λ) =

ûT(λ) · c(i)j
‖û(λ)‖2 · ‖c(i)j ‖2

(5)

is utilized. It expresses the correlation of the excitation signal
in subframe λ with the fixed codebook vector j of the
codebook matched to the bitrate mode i. The coefficient

ϕ(i)(λ) = max
j
ϕ
(i)
j (λ) (6)

then expresses the maximum correlation of a subframe with a
codebook. It was found that within a speech sample of about
5 s, the values

ϕ(i) = max
λ∈unvoiced

ϕ(i)(λ) (7)

provide discriminative properties.
Fig. 4 depicts distributions of the feature value defined in (7)

with regard to the codebook of the lowest bitrate. Two separate
distributions are given, one for speech signals actually coded
at the lowest bitrate and one for speech signals coded at any
other bitrate. The speech was taken from the training corpus
of [13]. For completeness, the mean values for the individual
bitrates are given in Table I. The discriminative properties of
(7) can be clearly observed.

Especially for the higher bitrates, the number Mi of avail-
able codebook vectors is significantly large. Consequently,
the complexity for computing (6) needs to be reduced to
allow for the desired application. By exploiting the codebook
structure, the complexity of the computation may be rendered
independent of Mi.
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Fig. 4. Estimated per-file feature value distribution for ϕ(1).

All codebooks of the AMR-WB codec have in common that
a bitrate-specific number of signed pulses of magnitude 1
are distributed over the 64 subframe sample positions [8].
All other positions are set to zero. The potential positions
of the pulses are divided into tracks; two tracks te and to
corresponding to even and odd sample indices, respectively,
for the lowest bitrate and four tracks tκ = [κ, 4+κ, ..., 60+κ]
with 1 ≤ κ ≤ 4 containing every fourth position for all other
bitrates.

At the lowest bitrate, each track only contains one pulse
and, thus, (6) may be rewritten as

ϕ(1)(λ) =
maxα∈to{|ûα(λ)|}+ maxα∈te{|ûα(λ)|}

‖û(λ)‖2 ·
√

2
(8)

due to the sifting properties of the vector multiplication
in (5). Since M1 = 4096, the computation of the maximum
correlation by means of (8) yields a reduction of computational
complexity of approximately 97 %.

For all other bitrates, the four tracks contain a both bitrate
and track-specific number of pulses n(i)κ . For each track the
vector sdesc,κ(λ) = [sκ,1(λ), ..., sκ,16(λ)], which contains the
absolute values of all samples of a track sorted in descending
order, is defined. With this definition, the correlation coeffi-
cient may then be computed as

ϕ(i)(λ) =

∑4
κ=1

∑n(i)
κ
α=1 sκ,α(λ)

‖û(λ)‖2 ·
√∑4

κ=1 n
(i)
κ

(9)

for 2 ≤ i ≤ 9. The complexity of (9) is, obviously, not propor-
tional to the total number Mi of available codevectors as is the
case in (6). Thus, the computational complexity is reduced by
at least 99.99 % for all applicable bitrates. When computing
(7) by means of (9), complexity may be, additionally, reduced
by writing the bitrate-specific normalization term outside of
the maximum operation:

ϕ(i) =
1√∑4
κ=1 n

(i)
κ

max
λ∈unvoiced

∑4
κ=1

∑n(i)
κ
α=1 sκ,α(λ)

‖û(λ)‖2
. (10)

The correlation coefficient for the lowest bitrate may be for-
mulated analogously using (8). The mathematical equivalence
of (7) and (10) was simulatively confirmed.

IV. BITRATE CLASSIFICATION

The previous sections introduced features based on codec
linearity/nonlinearity and on codebook correlation. This sec-
tion now applies said features for a bitrate detection by means
of a Gaussian-Mixture-Model (GMM) classifier. The choice
of this classifier was primarily motivated by the Gaussian-like
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TABLE II
RECOGNITION RATES FOR THE BITRATE CLASSES UNDER DIFFERENT CONSIDERATIONS OF FRAME OFFSET

(a) No Frame Offset

Estimated class

B1 B2 B3

Tr
ue

cl
as

s B1 99.11 % 0.77 % 0.12 %

B2 0.60 % 98.15 % 1.25 %

B3 0.00 % 1.30 % 98.70 %

(b) Frame Offset in Testing Only

Estimated class

B1 B2 B3

Tr
ue

cl
as

s B1 97.98 % 1.95 % 0.07 %

B2 13.75 % 82.32 % 3.94 %

B3 0.12 % 2.88 % 97.00 %

(c) Frame Offset in Training and Testing

Estimated class

B1 B2 B3

Tr
ue

cl
as

s B1 95.44 % 4.52 % 0.04 %

B2 5.11 % 92.05 % 2.84 %

B3 0.01 % 3.01 % 96.98 %

feature value distributions (Fig. 4) observed for most of the
features. This does, of course, not rule out that other classifiers
may achieve comparable results.

While the AMR-WB codec does in fact provide nine different
operational modes and, therefore, nine different bitrates, such
a fine class distinction cannot be motivated from a speech
quality point of view. As was shown in [9], the seven highest
bitrates all offer a comparably high speech quality, whereas
the two lowest bitrates yield a distinguishable quality degra-
dation. Consequently, this work aims at distinguishing the
two lowest bitrates (class B1 with 6.60 kbit/s and class B2

with 8.85 kbit/s) from the seven remaining bitrates (class B3

with 12.65 - 23.85 kbit/s). A representative set of example
speech files from the different classes is provided online by
the authors [15].

Due to above class definition, the correlation features re-
garding the codebooks of bitrate modes 1-3 are used. The
combination of these features with the linearity/nonlinearity
measure then yields three 4-dimensional GMMs. The models
were trained and tested with the training (4620 reference
files) and testing (1680 reference files) portion of the TIMIT
database [13], respectively. Each file consists of one spoken
sentence. The coding and decoding of the signals was imple-
mented using [16].

As listed in Table II, the proposed classifier achieves an
identification rate of 98.7 % for the three defined bitrate
classes. For these results, knowledge of the subframe positions
in both training and testing was assumed for the computation
of (7). With randomly offset testing sequences, the identifica-
tion rate drops to 92.4 %. However, this effect may be more or
less compensated by also allowing a random frame offset for
the training sequences, yielding a 94.8 % identification rate.

If only the correlation features, which do not require the
reference signal, are used in the statistical models, an overall
identification rate of roughly 80 % may still be achieved.
However, the application of these models yields a signifi-
cant false positive rate regarding bitrate classes B1 and B2.
Consequently, only the combination of both feature types
provides the high classification accuracy required for the
desired application.

V. SELF-TANDEM CLASSIFICATION

The occurrence of self-tandeming or transcoding yields a
notable speech quality degradation [9]. Hence, it is desirable

to identify these scenarios as the cause for an observed quality
degradation. By modifying the proposed bitrate classifier,
certain self-tandem types may be distinguished. For this, the
classes

T1 = {B3, B3 ×B3}
T23 = {T2, T3}

with subsets

T2 = {B1, B2, B1 ×B3, B2 ×B3}
T3 = {B1 ×B1, B2 ×B2, B1 ×B2}

are defined. The crossproduct of two bitrate classes is to
signify a self-tandem scenario with the applicable bitrates
where the order of application is irrelevant. Class T1 describes
conditions with satisfactory speech quality since only high
bitrates (B3) are considered. This is in contrast to T23, where
at least one low bitrate is involved in the processing of each
signal. The worst quality is achieved by signals in subset T3,
since all signals are subject to two consecutive low-bitrate
coding and decoding processes.

By training a new set of statistical models for these classes
analogously to the previous section, a recognition rate of
94.6 % is achieved regarding the distinction of T1 and T23.
Consequently, the coding scenarios yielding a satisfactory
speech quality are separated from the remaining scenarios
with a high accuracy. Given the recognition of class T23, the
subsets T2 and T3 are then identified correctly with a rate
of 82.1 %, providing additional information on the cause of
suboptimal speech quality. In the context of network testing,
where several sample recordings are available and no per-file
results are required, this classifier, thus, provides a means to
identify certain network scenarios regarding bitrate or self-
tandem.

VI. CONCLUSION

This paper provided two different types of features for
the classification of speech regarding coding effects within
the application of network testing. It was shown that with
these features a highly accurate bitrate detection for the AMR-
WB codec is possible. This is done with only four signal
features in total. Furthermore, since the features analyze the
transmission system on different scales, it is also possible to
gain information about the occurrence of self-tandem in the
transmission system.
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