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Ann-Kathrin Seifert∗, Lukas Schäfer, Moeness G. Amin†, Abdelhak M. Zoubir∗

∗Signal Processing Group †Center for Advanced Communications
Technische Universität Darmstadt Villanova University

64283 Darmstadt, Germany Villanova, PA 19085, USA
{seifert, zoubir}@spg.tu-darmstadt.de moeness.amin@villanova.edu

Abstract—Radar-based monitoring of human gait has become
of increased interest with applications to security, sports biome-
chanics, and assisted living. Radar sensing offers contactless
monitoring of human gait. It protects privacy and preserves a
person’s right to anonymity. Considering normal, pathological
and assisted gait, we demonstrate the effectiveness of radar in
discriminating different walking styles. By use of unsupervised
feature extraction methods utilizing principal component analy-
sis, we examine five gait classes using two different joint-variable
signal representations, i.e., the spectrogram and the cadence-
velocity diagram. Results obtained with experimental K-band
radar data show that the choice of signal domain and adequate
pre-processing are crucial for achieving high classification rates
for all gait classes.

I. INTRODUCTION

Gait analysis finds important applications in many areas
such as sports biomechanics, medical diagnosis, and rehabilita-
tion [1]. In the last two cases, the observation of gait serves as
a basis for therapeutic interventions or ancillary examinations.
In this respect, changes in gait patterns can serve as early
indicators for neurological conditions, such as parkinsonism,
orthopedic problems, and medical conditions.

Most of the research concerned with gait recognition is
based on video analysis or wearable-sensor data, see e.g. [2].
On the other hand, radar as an electromagnetic sensing modal-
ity has proven to be suitable for analyzing the human gait, see
e.g. [3]. It has the advantage of being insensitive to lighting
conditions, environmental changes and clothing. Further, it
enables remote monitoring of human gait in an unobtrusive and
privacy-preserving manner. Due to the micro-Doppler (mD)
effect [4], the back-scattered radar signals reflect the intricate
characteristics of the observed motion.

Classification of human daily activities and discrimination
between normal and abnormal gait strongly depend on the
representation domain of the radar backscattering, as well as,
the set of features extracted from such domain. Typically, the
desired radar performance requires careful selection of the
above two processing means, and is more so in the intra
motion category classification problem at hand. We show
that the choice of signal representations and adequate pre-
processing is important prior to applying unsupervised feature
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extraction methods, such as, e.g., principal component analysis
(PCA). The suitability of data representation domains for
human motions, including fall, was recently investigated in
[5], where the range information was taken into account. In
this paper, we assess the suitability of cadence-velocity and
time-frequency representations for gait classification based on
PCA features. Further, we quantify the effect of pre-processing
on the classification accuracy.

Prior work on radar-based human gait recognition is con-
cerned with discriminating between walking with and without
arm swinging [6]–[8], walking while holding an object [9],
[10], considering different speeds of walking [11] or aim at
discriminating individuals [12]. The effect of walking aids,
such as a cane or a walker, on radar mD signatures has recently
been studied in [13]–[19]. Using experimental K-band radar
data of five different gait classes, including normal, patholog-
ical and assisted walks, we apply PCA, two-dimensional PCA
(2D-PCA), and two-dimensional two-directional PCA (2D2D-
PCA) for feature extraction and achieve a classification rate
of 96%. The proposed approach outperforms existing works
on radar-based human gait recognition, such as [13], [14], in
terms of classification accuracy. We note that 2D2D-PCA was
previously investigated on radar data of human gait by Li et
al. in [9], where walking with and without carrying an object
was analyzed. Based on local windows of the spectrogram
they achieved a classification accuracy of 92.1% and 91.9%
applying PCA and 2D2D-PCA, respectively. Further, Tivive
et al. [8] applied 2D2D-PCA for dimensionality reduction
of feature vectors obtained from the time-frequency domain
for discriminating walking motions with and without arm
swinging, where they achieved a classification rate of 91.3%.

We show that 2D-PCA outperforms standard PCA in terms
of classification accuracy. The former is faster and avoids
singularities when computing the inverse image covariance
matrix, as the images are not vectorized prior to forming the
data matrix. Further, we demonstrate that, in our case, 2D2D-
PCA decreases the classification accuracy compared to using
2D-PCA. This effect is due to the fact that the considered
joint-variable representations do not show discriminating char-
acteristics along the Doppler frequency axis, and as a result,
the obtained feature vectors using 2D2D-PCA do not add any
meaningful information about the observed motions.
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The remainder of the paper is structured as follows. Sec. II
introduces different joint-variable representations of radar data
of human gait. In Sec. III, the feature extraction methods based
on PCA and its extensions are outlined. Sec. IV presents the
experimental results based on K-band radar data, and final
conclusion are given in Sec. V.

II. RADAR MICRO-DOPPLER SIGNATURES OF
HUMAN GAIT

Since the radar return signal of human gait is highly non-
stationary, we employ the spectrogram to show how the
signal’s power spectrum evolves over time. Given a discrete-
time signal s(n), the spectrogram is calculated as the squared
magnitude of the short-time Fourier transform (STFT)

S(n, k) =

∣∣∣∣∣
M−1∑
m=0

w(m)s(n+m) exp

(
−j2πmk

K

)∣∣∣∣∣
2

, (1)

for n = 0, . . . , N − 1, where M is the length of the
smoothing window w(·), k is the discrete frequency index
with k = 0, . . . ,K − 1, and N,M,K ∈ N. Figs. 1(a) and (c)
show spectrograms of two walking styles, where the amplitude
is converted to dB-scale and the background noise is reduced
via adaptive thresholding. In (a), a person is limping toward the
radar system. We can identify the limping leg by the reduced
maximal Doppler shift of every other mD stride signature.
A cane-assisted walk is shown in (c), where the radar has
a back-view on the person. Here, first, forth, and seventh
mD signatures are solely due the cane’s motion, since the
cane is not aligned with any leg. Further details on radar mD
signatures of human gait can be found in [13]–[15].

Another joint-variable representation for analyzing human
gait is the cadence-velocity diagram (CVD) [11], [12], [15],
[20], which is obtained by taking the Fourier transform of the
spectrogram along each Doppler frequency bin as

C(ε, k) =

∣∣∣∣∣
N−1∑
n=0

S̃(n, k) exp
(
−j2πnε

L

)∣∣∣∣∣ , (2)

where ε = 0, . . . , L− 1, L ∈ N, is the cadence frequency, and
S̃ is the noise-reduced spectrogram as shown in Figs. 1(a) and
(c). Contrary to the spectrogram, the CVD is a time-invariant
representation, i.e., it does not depend on the initial phase of
the gait cycle. It depicts the periodicity of body parts that move
with the same velocity. Figs. 1(b) and (d) show the CVDs
obtained from the spectrograms in (a) and (c), respectively.
In (b), the CVD reveals a stride rate of approximately 0.9 Hz.
However, the stride rate is not well defined in some cane-
assisted walks. For this reason, we define the mD repetition
frequency fmD, which represents the number of leg or cane
signatures per second.

III. FEATURE EXTRACTION BASED ON PRINCIPAL
COMPONENT ANALYSIS

For feature extraction, both two-dimensional signal repre-
sentations, i.e., the spectrogram and the CVD, are considered
as images denoted by X. PCA can be used to learn intrinsic

(a) Limping (b) Limping

(c) Cane-assisted walk (d) Cane-assisted walk

Fig. 1. Examples of spectrograms for (a) limping with one leg, and (c)
walking with a cane out of sync, along with the corresponding cadence-
velocity diagrams in (b) and (d), respectively.

characteristics of data by finding a set of orthonormal basis that
can be used to reconstruct the data by appropriate weighting.
Using only a subset of the thus obtained basis the high-
dimensional data can efficiently be represented in a lower
dimensional subspace. In this case, we aim to describe the
spectrogram or CVD images by a small number of features.

A. Principal Component Analysis

For PCA, the training images Xl ∈ RI×J , l = 1, . . . , P
are vectorized row-wise, xl = vec{XT

l } ∈ RQ×1, and
stacked column-wise to form a data matrix Y, i.e., Y =
[x1 x2 · · · xP ] ∈ RQ×P , where Q = IJ is the total number
of image pixels and P is the number of training images. The
principal components are the eigenvectors of the covariance
matrix of Y corresponding to the largest eigenvalues. For
computing the principal components, the singular value de-
composition (SVD) algorithm is utilized, which decomposes
Y such that Y = UDVT, where the columns of U and V
are the left and right eigenvectors, respectively. The diagonal
matrix D contains the singular values on its main diagonal,
where the eigenvalues are related to the singular values by
Λ = 1/(P −1)D2 [21]. The left eigenvector that corresponds
to the largest eigenvalue is the first principal component and
explains most of the variance in the data. The first α principal
components span a α-dimensional subspace of the originally
Q-dimensional data space. Each vectorized training and test
image, x, is projected into that subspace Ũ by

p = ŨTx, (3)

where p ∈ Rα×1, α ≤ Q ∈ N is the subspace representation
of the original image. Here, Ũ ∈ RQ×α contains the eigenvec-
tors, or eigenimages, corresponding to the first α eigenvalues.
The resulting projections p = [p1 p2 · · · pα]T, form the
feature vector used for classification.
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B. Two-dimensional Principal Component Analysis (2D-PCA)
Contrary to PCA, two-dimensional PCA operates on the

image directly without prior vectorization [22]. From the
image covariance matrix given by

H =
1

P

P∑
i=1

(
Xi − X̄

)T (
Xi − X̄

)
, (4)

where X̄ = 1
P

∑P
i=1 Xi is the average training image, the op-

timal projection axes are found by maximizing the generalized
total scatter criterion J(Φ) = ΦTHΦ. The unitary vector that
maximizes J(Φ), i.e., the eigenvector of H corresponding to
the largest eigenvalue, gives the optimal projection axis. Let
Φ be the optimal projection matrix whose columns contain β
optimal projection axes, i.e., φ1, . . . , φβ , β ≤ J ∈ N, an image
X is projected by

P = XΦ. (5)

The obtained feature matrix P ∈ RI×β is vectorized prior to
classification.

C. Two-dimensional Two-directional Principal Component
Analysis (2D2D-PCA)

The 2D-PCA operates along the row direction of the input
images [23]. In order to take the information along the image
columns into account, we calculate the image covariance
matrix

V =
1

P

P∑
i=1

(
Xi − X̄

) (
Xi − X̄

)T
, (6)

where X̄ = 1
P

∑P
i=1 Xi is again the average training image.

Maximizing the following generalized total scatter criterion
J(Ω) = ΩTVΩ, the optimal projection axes are given by
the eigenvectors of V. Using γ eigenvectors corresponding to
the largest eigenvalues, we obtain γ optimal projection axes
ω1, . . . , ωγ , where γ ≤ I ∈ N. Let Ω be the optimal projection
matrix whose columns are given by ω1, . . . , ωγ , the subspace
representation of an image X is obtained by

P = ΩTXΦ. (7)

The 2D2D-PCA feature matrix P ∈ Rγ×β is vectorized prior
to classification.

IV. EXPERIMENTAL RESULTS

A. Radar Data
The experimental radar data were recorded in an office envi-

ronment at Technische Universität Darmstadt using a 24 GHz
continuous-wave radar [24]. Four different test subjects were
asked to walk toward and away from the radar system, cover-
ing a distance of approximately 4 m. The radar was positioned
at 1.15 m above the ground. Each test subject performed five
different walking styles: 1) normal walking (NW), 2) limping
with one (L1) or 3) both legs (L2), 4) walking with cane in
sync with one of the legs (CW), and 5) walking with a cane,
where the cane is moved out of sync with any leg (CW/oos). In
total, 400 measurements of 6 s duration are considered, where
the number of experiments per gait class and direction are
equal among the test subjects.

B. Methodology

The radar signals of length N = 15360 are processed to
obtain the spectrogram as defined in Eq. (1), where a Hamming
window of length M = 255 and K = 2048 discrete frequency
points are used. After converting the spectrograms into loga-
rithmic scale and suppressing the noise, the CVD is calculated
according to Eq. (2) with L = 216 discrete frequency points.
The spectrograms and the CVDs are considered as images and
their pixel values are scaled to the range of [0, 1], i.e., they
are converted to gray-scale images. All images are resized
to have the same size, with I = 100 and J = 128. The
subspace is learned based on a subset of the available images.
Here, 80% of the measurements are used for training, i.e.,
P = 320, and the remainder is used for testing. Projecting
the training and test images into the subspace, we obtain
features to train and test a classifier. The classification results
are obtained using a simple nearest neighbor classifier with
Euclidean distance. In order to assess the overall performance,
100 classification results are averaged, where training and test
images are randomly chosen each time.

C. Comparison of Radar Data Representations

In order to demonstrate the importance of choosing appro-
priate data representations for feature extraction, we calculate
the spectrograms and CVDs as described in Sec. II, and com-
pare their classification performance. In order to compensate
for the time dependence of the spectrogram, we extract four
stride signatures per measurement and limit the Doppler axis
to the maximal observed Doppler shift. We note that some gait
spectrograms still show different initial stride types, e.g., the
first step can be normal or abnormal.

Fig. 2(a) shows the classification accuracy over all gait
classes as a function of the number of principal components
using PCA-based features of spectrograms, time-aligned spec-
trograms and CVDs. Here, the shaded areas indicate ±σ,
where σ denotes the standard deviation of the classification
accuracy. For the same number of principal components, the
accuracy is significantly higher for the CVDs and aligned spec-
trograms compared to the raw spectrograms. In essence, using
α = 18 features CVDs and aligned spectrograms achieve an
accuracy of approximately 90%, where the raw spectrograms
reach only about 70% correct classification rate. The latter
can be explained by the fact, that the raw spectrograms are
not aligned in time and vary in the sequence and number
of strides and (overlaying) cane signatures. Contrary to the
spectrogam, the CVD depicts the motion patterns of the gait
and is independent of the initial phase of the gait. Thus, we
find that, for gait pattern recognition, the CVD is the preferred
joint-variable representation.

D. Effect of Pre-Processing

CVDs represent the radar data in a joint frequency-
frequency domain, i.e., Doppler and cadence frequency. From
Fig. 1, we observe that along the Doppler frequency axis,
the CVDs contain information up to the maximal observed
Doppler shift. Hence, it is natural to consider the CVD
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Fig. 2. Comparison of classification accuracy using (a) different input signals, (b) differently pre-processed CVDs, and (c) different feature extraction methods.

images only up to this limit. Further, walks vary in mD
repetition frequency, where the amplitudes of the harmonic
components decrease with increasing cadence frequency and
the gait pattern is diminished beyond approximately 5 Hz. In
order to assess the relevance of compensating for different
maximal observed Doppler shifts fDmax and mD repetition
frequencies fmD, we analyze the classification performance
using the following pre-processed CVDs:

• CVD: considered up to ±500 Hz Doppler frequency and
5 Hz cadence frequency,

• CVD(fDmax): considered up to fDmax and 5 Hz cadence
frequency,

• CVD(fmD): considered up to ±500 Hz Doppler frequency
and 5 · fmD (Hz) cadence frequency

• CVD(fDmax,fmD): considered up to fDmax and 5 · fmD (Hz)
cadence frequency,

where fDmax and fmD are extracted from the spectrogram as
described in [13]. Fig. 3 shows examples of pre-processed
CVDs, where (a) corresponds to the CVD in Fig. 1(d). We
point out that pre-processing of CVDs along the cadence
frequency axis was first proposed in [15].

The classification accuracy of using the aforementioned
versions of the CVD and PCA-based feature extraction is
shown in Fig. 2(b). It can be seen that compensating for
different fDmax does not significantly increase the classification
performance compared to the raw CVD. However, aligning the
CVDs along the cadence frequency axis, i.e., using CVD(fmD)
or CVD(fDmax,fmD), the classification accuracy is improved by
5% to 10% depending of the number of principal components.

E. PCA-based classification

Fig. 2(c) shows the classification results using PCA, 2D-
PCA, and 2D2D-PCA for feature extraction of the pre-
processed CVDs, i.e., CVD(fDmax,fmD). It can be seen that 2D-
PCA outperforms PCA and 2D2D-PCA in terms of accuracy,
when using only a small number of projection axes for feature
extraction. Note that β is chosen equal to γ for 2D2D-
PCA. The highest classification rates of 95.97% are achieved
by using 2D-PCA and β = 5 projection axis. In Table
I, the feature extraction methods are compared in terms of
classification accuracy, dimension of the feature vector, and

(a) CVD (b) CVD(fD
max)

(c) CVD(fmD) (d) CVD(fD
max,fmD)

Fig. 3. Examples of pre-processed CVD images.

TABLE I
COMPARISON OF FEATURE EXTRACTION METHODS USING CVDS.

Method Accuracy Feature Dimension Computation Time

PCA 83.21% 5 0.57 s
2D-PCA 95.97% 5× 100 0.18 s

2D2D-PCA 93.53% 5× 5 0.16 s

computation time, where the latter is the average processing
time over 100 classifications. Since the computation times of
2D-PCA and 2D2D-PCA are similar, we conclude that 2D-
PCA is most efficient in capturing the inherent structure of
the CVD.

In order to analyze why 2D2D-PCA does not outperform
2D-PCA, we compare the classification accuracy of using 2D-
PCA on the pre-processed CVDs and the same images rotated
by 90 degree. In essence, we compare the performance of us-
ing the image covariance matrix H of Eq. (4), or V of Eq. (6)
for feature extraction. Fig. 4 shows that the classification
accuracy is generally lower when using V. This holds for both,
the pre-processed CVDs and the aligned spectrograms. Hence,
the rows of both joint-variable signal representations contain
more information for discriminating different gait classes than
their columns. In these cases, 2D2D-PCA does not outperform
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Fig. 4. Comparison of classification performance for 2D-PCA using time-
aligned spectrograms and pre-processed CVDs. In (b) the input images are
rotated by 90 degree prior to feature extraction.

TABLE II
CONFUSION MATRIX (%) USING 2D-PCA AND ALIGNED SPECTROGRAMS.

True / Predicted NW L1 L2 CW CW/oos

Normal walk (NW) 82 2 0 15 1

Limping with one leg (L1) 4 92 3 1 0

Limping with both legs (L2) 4 3 91 2 0

Cane - synchronized (CW) 13 1 0 85 1

Cane - out of sync (CW/oos) 2 2 1 3 92

TABLE III
CONFUSION MATRIX (%) USING 2D-PCA AND PRE-PROCESSED CVDS.

True / Predicted NW L1 L2 CW CW/oos

Normal walk (NW) 97 0 0 3 0

Limping with one leg (L1) 1 98 0 1 0

Limping with both legs (L2) 2 0 93 5 0

Cane - synchronized (CW) 5 3 0 92 0

Cane - out of sync (CW/oos) 0 0 0 1 99

2D-PCA because of the special pattern in the images at hand.
The confusion matrices for 2D-PCA-based feature extrac-

tion using aligned spectrograms and pre-processed CVDs are
given in Tables II and III, respectively. Here, the image
covariance matrix H and β = 5 projection axes are used.
The average accuracy over all gait classes is 88.56% and
95.97% for the spectrograms and the CVDs, respectively.
Using spectrograms, most of the confusion appears between
NW and CW, which is natural since the underlying gait pattern
of a cane-assisted walk is a normal walk. However, the CVD
is able to reduce this confusion significantly as it detects the
additional periodicity in the gait due to the cane’s motion.

V. CONCLUSION

We addressed the importance of choosing appropriate signal
representations and perform adequate pre-processing prior to
unsupervised feature extraction based on PCA and its exten-
sions. We found that for radar-based human gait recognition,
the CVD represents a more suitable joint-variable represen-
tation to discern different gait patterns than the spectrogram.
Experimental results show that five different gait classes are
correctly classified in 96% of the cases using pre-processed
CVDs. Here, 2D-PCA is found most efficient for feature
extraction compared to standard PCA and 2D2D-PCA.
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