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ABSTRACT

Moving target classification is a key ingredient to avoid
accident in autonomous driving systems. Recently, fast chirp
frequency modulated continuous wave (FMCW) radar has
been popularly used to recognize moving targets due to its
ability to discriminate moving objects and stationary clutter.
In order to protect vulnerable road users such as pedestrians
and cyclists, it is essential to identify road users in a very short
period of time. In this paper, we propose a deep neural net-
work that consists of convolutional recurrent units for target
classification in automotive radar system. In our experiment,
using the real data measured by the fast chirp FMCW-based
high range resolution radar, we show that the proposed net-
work is capable of learning the dynamics in time-series image
data and outperforms the conventional classification schemes.

Index Terms— convolutional neural networks, recurrent
neural networks, classification, fast chirp FMCW radar

1. INTRODUCTION

Moving target classification is a key ingredient to avoid acci-
dent in autonomous driving systems. In recent years, there is
a growing interest to implement target classifier using 24GHz
and 77GHz radars [1]. In classifying the human activities, the
radar cross section (RCS) has been popularly used. The RCS
of target, which corresponds to the effective area of target, de-
pends on various factors such as posture, body shape, cloth-
ing type, size, orientation, to name just a few. However, the
RCS-based approach is computationally inefficient and also
is not easy to model the various behaviors of moving targets.
As an alternative approach, fast chirp frequency modulated
continuous wave (FMCW) radar has been popularly used in
recent years. The fast chirp FMCW radar has a simple struc-
ture and also is very easy to extract range-velocity (RV) image
used to discriminate moving objects and stationary clutter [2].
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Since the protection of vulnerable road users such as pedes-
trians and cyclists is key to the successful commercialization
of autonomous driving systems, extracting the radar features
to identify the road users is an important problem. For exam-
ple, high resolution radar characteristics of pedestrians and
cyclists have been presented in [3].

One major bottleneck in the target classification of the
automotive radar systems is very stringent processing time
constraint. Since the acquisition of data snapshot and clas-
sification should be completed in a very short period of time
(e.g., less than 0.5 sec), it is technically not possible to use
the data accumulated for a long period. Clearly, if only a few
snapshots are used in the target classification, one might not
ontain the accurate classification results. Fortunately, recent
studies demonstrate that the deep learning based classifiers
achieve significant performance improvement over the con-
ventional approaches such as linear classifier or support vec-
tor machine (SVM). In particular, convolutional neural net-
work (CNN) plays a key role in the front-end implementation
and has shown great promise in the field of image recognition
tasks such as object classification and target detection when
the underlying data has 2-dimensional structure [4, 5]. CNN
has been widely used in computer vision tasks such as video
representation and classification of human activity. Besides,
recurrent neural networks (RNN) have been popularly used in
time-series analysis. Well-known limitation of RNN models
is the vanishing gradient problem [6]. As a means to over-
come this problem, long short-term memory (LSTM) [7] and
gated recurrent unit (GRU) [8] have been introduced. LSTM
and GRU-based architectures are used in various tasks such as
speech recognition and video captioning due to their ability to
preserve information over long period of time.

An aim of this paper is to present a convolutional recur-
rent unit-based deep neural network for automotive radar sys-
tems. In the proposed scheme, time-series radar snapshots
are transformed into RV images via 2-dimensional discrete
Fourier transform (2-D DFT). In order to handle time-series
RV images, we exploit the convolutional recurrent neural net-
work (CRNN), in particular, convolutional LSTM (C-LSTM)
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[9] and convolution GRU (C-GRU) [10]. The key ingredient
of the proposed classifier is a convolutional recurrent unit-
based feature extractor to obtain the dynamics of input RV
images used to perform the target classification.

In our experiments, we focus on the lateral movement
of vulnerable road users, which reflects the most frequent
peril scenario. Using the real data measured by the fast chirp
FMCW-based high range resolution radar, we show that the
proposed network can learn the dynamics of the time-series
image data. Also, we show that the proposed network outper-
forms the conventional classification schemes.

2. FAST CHIRP FMCW RADAR-BASED MODEL

2.1. Fast Chirp FMCW Radar

The concept of the fast FMCW chirp modulation has been
proposed in [11] and applied to the automotive radar system
in [12]. The main idea behind the fast chirp FMCW radar is
to scale down the chirp modulation time in the microsecond
(µsec) range. As a result, the conventional FMCW chirp is
replaced by a sequence of short chirps. Using this radar, 2-D
data matrix S ∈ CM×N can be measured. Note that N is the
number of single chirps and M = fsTchirp is the number of
sample points in a single chirp (Tchirp is the single chirp mod-
ulation time and fs is the sampling frequency). For the data
matrix S, the absolute value of 2-D discrete Fourier transform
(DFT) is expressed as

X[k, l] =
1√

M ·N

∣∣∣∣∣
N−1∑
n=0

M−1∑
m=0

[
S[m,n]e−2jπmk

M

]
e−2jπ nl

N

∣∣∣∣∣ .
Note that X is referred to as the RV image and used as an
input data of the classifier.

2.2. Recurrent Neural Networks

In this subsection, we briefly review the conventional RNN
and LSTM. RNN-based model can be applied to a variable
length of sequence data. Specifically, when the sequenceX =
(x1, x2, ..., xT ) is given, then the activation ht of a vanilla
RNN is given by

ht = tanh(Wxhxt + Whhht−1)

where Wxh and Whh are the weight matrices.
Due to the vanishing gradient problem, it is difficult to

train the network to learn the long-term dynamics. As an al-
ternative to the RNN, LSTM and GRU have been popularly
used [7, 8]. The LSTM structure can be extended using peep-
hole connections [13]. The peephole LSTM used in our work
has been shown to be a promising approach for the applica-
tions where the precise duration of intervals between relevant
events matters. In the sequel, we call the peephole LSTM as
LSTM for brevity. In essence, LSTM incorporates memory

units that allow the network to learn when to forget previous
hidden states and when to update hidden states given new in-
formation. The activation ht of LSTM can be expressed as
the following set of equations:

it = σ(Wxixt + Whiht−1 + Wci � ct−1)

ft = σ(Wxfxt + Whfht−1 + Wcf � ct−1)

ct = ft � ct−1 + it � tanh(Wxcxt + Whcht−1)

ot = σ(Wxoxt + Whoht−1 + Wco � ct−1)

ht = ot � tanh(ct)

where σ(·) is the sigmoid function
(
σ(x) = ex

1+ex

)
, tanh(·)

is the hyperbolic-tangent function, and � is the element-wise
product. LSTM includes the gates (the input gate ii, the for-
get gate ft, and the output gate ot) which decide the amount of
information to pass through. Note that ii, ft, and ot, have the
same equations but with different parameters. The cell state
ct which corresponds to the internal memory of the unit repre-
sents the output indirectly. The activation ht is the nonlinear
version of ct (tanh is popularly used as a nonlinear function).

The overall idea behind GRU is quite similar to that of
LSTM. It has been shown that GRU networks perform similar
to LSTM but have simpler structure [14]. The hidden state ht
of the GRU is defined by the following set of equations:

zt = σ(Wzxt + Uzht−1 + Wcz � h̃t−1)

rt = σ(Wrxt + Urht−1 + Wcr � h̃t−1)

h̃t = tanh(Wxt + rt � (Uht−1))

ht = zt � ht−1 + (1− zt)� h̃t

Although there is neither internal memory nor output gate in
GRU, the hidden state ht represents both the internal memory
and the output. The reset gate rt and the update gate zt of
GRU operate in a similar way to the input and forget gates of
LSTM. We also applied peephole connection to GRU.

3. DEEP NEURAL NETWORK WITH
CONVOLUTIONAL RECURRENT UNITS

The overall moving target classification system is illustrated
in Fig. 1. The proposed network consists of one convolu-
tional recurrent layer, one convolutional layer, and one fully
connected layer. We use a recurrent unit whose input is 2-D
time-series signals obtained from the radar. As a convolu-
tional recurrent unit for extracting features of moving targets,
we apply C-LSTM [9] and C-GRU [10]. One main issue in
the automotive radar systems is to understand the dynamics
of targets in a reasonable time with only a few number of
images. One main advantage of the CRNN-based feature ex-
tractor is that the network can learn the dynamics of moving
targets. Also, by applying the convolution operators, the num-
ber of parameters can be reduced significantly. Clearly, this
will be very helpful in memory-constrained applications such
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Fig. 1: Proposed moving target classification system; The time-series radar signals is measured and transformed into RV images
by 2-D DFT. The CRNN-based proposed network is applied to extract the features of moving targets. The convolutional layer
and fully connected layer are followed.

as the proposed system. Another important benefit is that the
spatial information of an input image can be maintained and
the higher level of spatial features can be learned through the
deep layers.

By applying convolutional operators, the activations Ht of
C-LSTM can be re-written as

It = σ(Wxi ∗ Xt + Whi ∗Ht−1 + Wci � Ct−1)

Ft = σ(Wxf ∗ Xt + Whf ∗Ht−1 + Wcf � Ct−1)

Ct = Ft � Ct−1 + It � φ(Wxc ∗ Xt + Whc ∗Ht−1)

Ot = σ(Wxo ∗ Xt + Who ∗Ht−1 + Wco � Ct−1)

Ht = Ot � φ(Ct)

where φ(·) is the nonlinear activation function and ∗ is the
convolution operator. Also, the activations Ht of C-GRU can
be written as

Zt = σ(Wz ∗ Xt + Uz ∗Ht−1 + Wcz � H̃t−1)

Rt = σ(Wr ∗ Xt + Ur ∗Ht−1 + Wcr � H̃t−1)

H̃t = φ(W ∗ Xt + Rt � (U ∗Ht−1))

Ht = Zt �Ht−1 + (1− Zt)� H̃t

As a nonlinear activation function (denoted as φ), tanh is
widely used since it can suppress the activation. However,
this option might slow down the training process and also
cause vanishing gradient problem. The activation function
relu might boost the training process but still causes a value
exploding problem. In order to handle this problem, we em-
ployed the regularization on the weights, which also prevents
the overfitting of the model. For the purpose of comparison,
we provide the experiment results for CRNN units with tanh
and relu and show that the relu-based models outperforms
tanh-based models.

Center
Frequency

Bandwidth Sampling
period

Range
Resolution

Velocity
resolution

77GHz 500MHz 50ms 0.3m 0.11m/s

Table 1: The characteristics of the high range resolution radar
used in the experiment

4. EXPERIMENTS

In our experiments, we evaluate the classification perfor-
mance of the network using the data obtained by the fast
chirp FMCW radar of Hyundai Mobis. The detailed specifi-
cations of the radar are listed in the Table 1.

4.1. Datasets and Experimental Settings

In our experiments, the range-velocity images are obtained
from 2-D DFT of radar signal matrices. The datasets are
categorized into four types: pedestrians, cyclists, vehi-
cles, and none for non-existence of any target. As illus-
trated in Fig. 2, one of three targets moves through the
detection range of radar at a fixed speed. In the exper-
imental environments, pedestrians, cyclists, and vehicles
moved at nearly (5km/h, 12km/h), (12km/h, 20km/h),
and (20km/h, 30km/h), respectively. Note that the targets’
speeds and the distances to radar are not available and hence
unused for the target classification. When the target is mov-
ing, radar signal reflected from the moving target is discretely
sampled in every 50ms. The radar signals are transformed
into a range-velocity images of size 100× 256 by taking 2-D
DFT patterns. The dataset consisting of 1,505 snapshots is
divided into 88% and 12% for training and test, respectively.

In order to train the recurrent model, at most l consecu-
tive RV images are concatenated as a sequence. For realistic
scenario, we set l to 3 and 5. Then, it takes 0.1 and 0.2 sec
to obtain the signals, which are enough to capture the move-
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target C-LSTM, relu, l = 5 C-LSTM, relu, l = 3 C-LSTM, tanh, l = 5 C-LSTM, tanh, l = 3 LSTM, l = 5
class Ped Cyc Veh No Ped Cyc Veh No Ped Cyc Veh No Ped Cyc Veh No Ped Cyc Veh No
Ped 90.8 6.8 0 2.4 95.8 1.9 0 2.3 94.8 1.6 0 3.6 98.1 1.9 0 0 64.3 14.9 0 20.9
Cyc 34.5 65.5 0 0 29.2 70.8 0 0 42.9 57.1 0 0 84.7 15.3 0 0 66.1 28.5 0 5.4
Veh 0 0 100 0 0 0 98.6 1.4 0 0 100 0 0 0 100 0 0 0 98.2 1.8

target C-GRU, relu, l = 5 C-GRU, relu, l = 3 C-GRU, tanh, l = 5 C-GRU, tanh, l = 3 CNN, l = 1
class Ped Cyc Veh No Ped Cyc Veh No Ped Cyc Veh No Ped Cyc Veh No Ped Cyc Veh No
Ped 95.6 0 0 4.4 98.6 0.5 0 0.9 78.6 9.5 0 7.1 95.4 4.2 0 0.5 91.7 8.3 0 0
Cyc 9.5 90.5 0 0 34.7 65.3 0 0 45.3 47.6 0 7.1 73.6 26.4 0 0 65 35 0 0
Veh 1.2 0 98 0.8 0 0 100 0 0 0 100 0 0 0 92.9 7.1 0 0 100 0

Table 2: The test results for proposed networks, LSTM, and CNN. Each number represents the proportion of the predicted class
in percentage. The classes in the first column denotes the ground truth. The activation function φ is replaced to either relu or
tanh. The sequence length l is either 3 or 5 for recurrent units and 1 for CNN model.

Fig. 2: A target moving straight at a fixed speed in a lateral di-
rection to the stationary radar. The radar signals are obtained
every 50 ms.

ments of targets. At the beginning and the end of radar sig-
nals of moving target, none-class images are added. For in-
stance, if 5 consecutive images of a target are given (e.g.,X =
{X1, · · · ,X5}) and l = 3, we can obtain 7 sequences (e.g.,
S1 = {N,N,X1},S2 = {N,X1,X2}, · · · ,S7 = {X5,N,N}
where N is the none-class image). As we assume the single
target scenario, every sequence includes the RV images of a
single target. In other words, images of pedestrian and none-
class together can be included in a sequence (none-class is
not a target) but images of the combinations of moving tar-
gets such as pedestrian and cyclist cannot. Therefore, every
sequence can be mapped into one of four classes.

4.2. Deep Neural Network Architecture

In this part, we describe the proposed neural network archi-
tecture. In the front-end, each convolutional recurrent layer
outputs 5 feature maps. The 5 feature maps from l CRNN
units are concatenated, and hence, the number of channels
of input to the convolutional layer becomes 5l. For convo-
lutional layer, we use 50 filters of size 2 × 2. Finally, the

output is fully connected to 4 nodes and each node is mapped
to each of class (pedestrian, cyclist, vehicle, and none.) Soft-
max function is applied to the output vector of dense layer.
We use the cross-entropy as a loss function with one-hot la-
bel vector. We use AdamOptimizer and its learning rate and
momentum are set to 10−3 and 0.9, respectively. In order to
avoid the overfitting of the network, we add `2-norm regular-
ization on weight matrices with multiplier set to 0.01.

In the convolutional recurrent units, we design the activa-
tion Ht to be smaller size than Xt to reduce the computational
cost. We used the 4 × 4 filters for the input Xt with 5 chan-
nels and stride-2. For the previous activation Ht−1, we used
3 × 3 filters with 5 channels and stride-1. The filters use in
peephole connections are of the same size as the activations.

4.3. Comparison Results

We perform the simulation using the proposed neural net-
work, conventional LSTM without convolution, and CNN
without recurrent units. For the conventional LSTM network,
the RV images are reshaped into vectors but the same se-
quences are used as in the convolutional recurrent units. We
set the input and output size to each LSTM unit to be 25600
and 10, respectively. For CNN model, every RV image is
labelled individually. In CNN model, we use 2 convolutional
layers (4×4 and 3×3 filters with 50 and 200 channels, respec-
tively) and 1 fully connected layer. The simulation results are
shown in Table 2. For each class, we compute the proportion
of predicted class given the target class. We present the var-
ious results by changing CRNN units, activation functions,
and sequence lengths. As an activation function φ, either relu
or tanh is used. Other activation functions can also be applied
to CRNN units. In this work, however, we focus on the es-
sential effect of changing the activation function from tanh to
relu. The obtained results are the average of experiments for
three times. We observe that the performances of C-LSTM
and C-GRU models are more or less similar. We also ob-
serve that the relu-based model outperforms the tanh-based
model. Particularly, tanh-based model learns the dynamics of
moving targets slowly and often fails to learn the dynamics.
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C-LSTM C-GRU LSTM CNN
# of parameters 135K 103K 218K 260K
# of operations 11.3M 10.5M 1M 598M

Table 3: The number of parameters (without biases) and op-
erations (multiplications only) used in the models

Among all targets, discrimination between pedestrians and
cyclist is particularly difficult using conventional approaches
but we can see that CRNN-based models classifies the two
targets more clearly. For the purpose of the comparison of
the complexity, we provide the number of parameters and op-
erations of the all models in Table 3. Since we use the same
structure for C-LSTM and C-GRU models, the difference
of complexity only results from the units themselves. The
networks using CRNN achieve improved classification per-
formances with reasonable amount of memory requirements
to LSTM and CNN models as well.

5. CONCLUSION

In this paper, we have presented a convolutional recurrent
units-based deep neural network for moving target classifi-
cation. We applied the convolutional LSTM and GRU units
as feature extractors. The proposed networks have shown the
ability to learn the dynamics of moving targets. Also, we have
shown from the simulation results that the proposed networks
outperform the conventional networks which lacks either ap-
ply convolutional layers or recurrent layers. For the commer-
cialization of autonomous driving systems, we believe that the
proposed work will be a useful for further works.
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