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Abstract—We perform a first-order perturbation analysis of a
root-MUSIC-type method for resolving collisions in the context
of blind network-assisted diversity multiple access (BNDMA).
Polynomial roots are computed as an intermediate step of the
root-MUSIC algorithm for the purpose of blindly identifying the
set of transmitters involved in a collision. We derive expressions
for the individual and joint distributions of the noise-induced
angular shifts of the computed roots. The expressions are
analyzed in relation to the signal-to-noise ratio and the number
of packet retransmissions made to resolve a collision. Results are
verified numerically.

Index — perturbation analysis, root-MUSIC, collision
resolution, network-assisted diversity

I. INTRODUCTION

Network-assisted diversity multiple access (NDMA), first
introduced in [1], is a cross-layer communication protocol
that enables shared access to a communication channel and
provides a solution for resolving packet collisions. In the case
of simultaneous transmissions on the same frequency band,
collided data is not discarded but rather stored by the receiver.
The receiver relies on the medium access control (MAC) layer
functionality and requests packet retransmissions from the
involved transmitters. This creates the needed diversity which
is exploited in the physical (PHY) layer using advanced signal
processing in order to separate the colliding packets. In the
blind version of NDMA (BNDMA), the set of active transmit-
ters is unknown to the receiver beforehand. Each transmitter
k multiplies its nth transmission of packet −→s k by r

(n−1)
k ,

where rk is a complex exponential characteristic of transmitter
k. This allows the receiver to detect the signatures of the
transmitters in the received signal and blindly identify the
active set. If each of K transmitters makes N transmissions,
the received packets may be stacked in matrix YN given by [2]

YN×P = WN×K × SK×P + ∆X (1)

WN×K is a Vandermonde coefficient matrix whose kth

column is [1, rk, r
2
k, . . . , r

N−1
k ]T . SK×P holds K user

packets {−→s k}k, each of which has P symbols. ∆X is the
observation noise.

Equation (1) resembles the response of an antenna array of
N sensor nodes that sample a mixture of K signals. The
Vandermonde structure of WN×K , which acts as a virtual
steering matrix, implies that the array has a uniform linear
arrangement. Data from source k extends over the kth row
of S, and P snapshots are collected at each antenna output.
The problem of blindly detecting the characteristic complex
exponentials {rk}k of the active transmitters is equivalent

to the direction of arrival (DoA) estimation problem for K
sources, where source k impinges on the antenna array at an
angle ωk = ∠rk. For the DoA problem, Estimation of Signal
Parameters via Rotational Invariance Technique (ESPRIT),
Multiple Signal Classification (MUSIC) and root-MUSIC are
high resolution DoA estimation techniques. By making this
analogy between BNDMA and DoA, an ESPRIT-type method
and a root-MUSIC-type method for blind collision resolution
are described in [2] and [3] respectively.

In this paper we do a perturbation analysis of the BNDMA
method in [3]. Perturbation analysis refers to the effect of
observation noise ∆X in (1) on the accuracy of detecting
characteristic roots {rk}k or equivalently {ωk}k from YN ,
which in turn affects the reconstruction of WN×K and the
decoding of packets S. Perturbation analysis for subspace
decomposition in general is examined for instance in [4–7].
For the particular MUSIC-type subspace methods, results
on perturbation analysis do exist in the literature in the
context of DoA estimation. The dependence of performance
on the signal-to-noise ratio (SNR), array size N , number
of snapshots P , angular separation of the signals, etc.
is studied numerically in [8–10]. Analytical results for the
mean-squared errors (MSEs) of the DoA estimates are derived
in [7], [11–13]. These results give insight on the effect of the
array geometry, model error parameters, array size N , and the
number of snapshots P on the performance of DoA estimation.

We analyze root-MUSIC in the context of collision resolution.
This differs from DoA estimation in several respects. First,
we focus on the noise averaging effect that is achieved by
stacking a large number of packets N in YN , whereas in
DoA estimation the number of sensors N cannot be flexibly
varied. Second, we only consider packet transmissions of
fixed symbol size P . In DoA estimation it is crucial to
increase the time-averaging factor P to get better estimates
of the spatial covariance matrix of the antenna array.
Third, in [3] we decompose the measurement matrix YN
itself. The observation error ∆X is assumed to follow a
complex Gaussian distribution. By subspace-decomposing
the sample covariance matrix computed from YN instead,
as is typical in DoA estimation, the approximation error
of the covariance matrix is modeled by a complex Wishart
distribution [14], [15].

In the next section we derive first-order approximations of
both the individual and the joint distributions of the angular
displacements {∆ωk}k of {rk}k in the complex plane. We
prove these shifts are jointly Gaussian and fully characterize
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the means and covariances. While in [7] it is shown that the
MSE of a DoA estimate monotonically decreases with the
number of sensors N , in section III we argue that the MSE
decays quadratically in the number of stacked packets N .
Section IV presents numerical results and section V concludes
the paper.

II. NOISE ANALYSIS

The signal component of YN in (1) can be expressed by
SVD as

X = WN×K × S = U‖ΣsV
H
s + U⊥ΣnV

H
n (2)

where U‖ and U⊥ constitute an orthonormal basis for the left
singular vectors of X , Vs and Vn form an orthonormal basis
for the right singular vectors, Σs is a diagonal matrix holding
the K non-zero singular values of X , and Σn is a matrix of
(N −K)× (N −K) zeros.

The SVD of the noisy signal YN in (1) can be re-expressed
as

YN = X + ∆X = Û‖Σ̂sV̂
H
s + Û⊥Σ̂nV̂

H
n (3)

where the perturbation ∆X in (1) leads to a perturbation of the
singular vectors U‖, U⊥, Vs and Vn and the singular values
diag(Σs) and diag(Σn). In particular, a perturbation of U⊥
leads to a perturbation of the noise subspace projection matrix:

P̂Un = Û⊥Û
H
⊥ = PUn + ∆PUn = U⊥U

H
⊥ + ∆PUn (4)

This leads to a displacement of the roots {rk}k generated by

−→
w′N (z)H × PUn ×

−→
w′N (z) = 0 (5)

for an arbitrary coding vector
−→
w′N (z) =

[
1, z1, . . . , zN−1

]T
,

which impacts the identification of the set of active
transmitters [3].

A. Perturbation of the noise projection matrix PUn

Referring to [4], for an arbitrary matrix X of SVD as in (2),
a perturbation ∆X leads to a first-order perturbation ∆U‖ of
the form

∆U‖ = U‖R+ U⊥U
H
⊥∆XVsΣ

−1
s (6)

where R = D � (UH
‖ ∆XVsΣs + ΣsV

H
s ∆XHU‖) and � is

the Hadamard product. D is a K × K matrix whose first
diagonal elements are zero while the off-diagonal elements
have the form D(k1, k2) = 1/(σ2

k2
− σ2

k1
), 1 ≤ k1 6= k2 ≤ K.

Values {σk}k correspond to the K non-zero singular values
of X whose rank is K.

Define the signal subspace projection matrix as PUs
= U‖U

H
‖ .

By the orthonormality of the left singular vectors of X we have

PUs + PUn = I (7)

Therefore,

∆PUn
= −∆PUs

= −∆U‖U
H
‖ − U‖∆U

H
‖ (8)

Substituting (6) in (8) and noting that RH = −R we have

∆PUn
= −PUn

∆XX+ −X+H
∆XHPUn

(9)

where
X+ = VsΣ

−1
s UH

‖ (10)

B. Angular displacements of the characteristic complex expo-
nentials {rk}k

Denote by dk = 1 and ωk the respective magnitude and
angle of characteristic complex exponential rk of transmitter
k, i.e. rk = dk exp(jωk). A coding vector −→w k of transmitter
k is defined as
−→w k =

−→
w′N (rk) = [1, exp(jωk), . . . , exp (j(N − 1)wk)]

T

(11)
where

−→
w′N (z) is an arbitrary coding vector as in (5). By

definition of U⊥ in (2) we have

−→wH
k PUn

−→w k = 0, 1 ≤ k ≤ K (12)

Because of ∆X , perturbed roots {r̂k}k are generated by (5)
as approximations for {rk}k. Define

−→w (1)
k =

d
−→
w′

dz
(rk)

= [0, exp(jωk), . . . , (N − 1) · exp (j(N − 1)ωk)]
T

(13)

Referring to [11], (5) can be approximated as a first-order
perturbed version of (12) as follows:

(−→wH
k −j−→w

(1)
k

H
∆ωk−−→w (1)

k

H
∆rk+h.o.t)×(PUn

+ ∆PUn
)

× (−→w k + j−→w (1)
k ∆ωk +−→w (1)

k ∆rk + h.o.t) = 0 (14)

where h.o.t refers to higher order terms to be neglected in a
first-order analysis. (14) implies perturbation ∆PUn

of noise
projection matrix Un expectedly shifts root rk to new position
(1 + ∆rk) exp(j(ωk + ∆ωk)) in the complex plane. The real
and imaginary parts in the left-hand side of (14) should be
equated to zero. Unless higher-order terms are considered,
∆rk = 0. Moreover, the identification of the active set of
users depends on the angles of the detected roots. A first-order
approximation of the angular shift ∆ωk is given by

∆ωk =
−→w (1)

k

H
PUn

∆XX+−→w k −−→wH
k X

+H
∆XHPUn

−→w (1)
k

2j−→w (1)
k

H
PUn

−→w (1)
k

(15)
Note that ∆ωk in (15) is real-valued.

C. Individual distributions of angular shifts {∆ωk}k
Recall that ∆X has dimensions N×P . We assume noise is

independent for the different packet symbols, so the columns
of ∆X are independent. We assume noise is also independent
over the different slot durations, so the entries of each column
of ∆X are independent. We finally assume each entry ∆Xn,p

of ∆X is circularly symmetric complex normal of mean zero
E[∆Xn,p] = 0, variance E[∆XH

n,p∆Xn,p] = σ2 and relation
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E[∆Xn,p∆Xn,p] = 0. Therefore, we may associate a complex
matrix normal distribution to ∆X:

∆X ∼ CN (0N×P , σ
2IN×N , IP×P ) (16)

The first argument in CN (·, ·, ·) is the mean, the second
argument describes the dependencies among the entries of
a single column (covariance matrix), and the third argument
describes dependencies among the different columns. This is
equivalent to

vec(∆X) ∼ CN (0NP , σ
2IP×P ⊗ IN×N ) (17)

where CN (µ,Γ) is the complex multivariate normal distribu-
tion of mean µ and covariance matrix Γ,

vec(∆X) = [∆X1,1, . . . ,∆XN,1,∆X1,2,

. . . ,∆XN,2, . . . ,∆X1,P , . . . ,∆XN,P ]T (18)

and A⊗B is the Kronecker product of two arbitrary matrices
A ∈ Cm×n and B ∈ Cp×q . Define

CH
k =

−→w (1)
k

H
PUn

−→w (1)
k

H
PUn

−→w (1)
k

(19)

Dk = X+−→w k (20)

Using (16), CH
k ∆XDk is distributed as

CH
k ∆XDk ∼ CN (0, σ2CH

k IN×NCk, D
H
k IP×PDk) (21)

By a transformation as in (17), CH
k ∆XDk is a simple complex

random variable of distribution

CH
k ∆XDk ∼ CN (0, σ2DH

k DkC
H
k Ck) (22)

Using the fact that PUn
PH
Un

= PUn
, we have

CH
k Ck = 1/

(
−→w (1)

k

H
PUn

−→w (1)
k

)
(23)

Moreover, using (10) and V H
s VS = I we have

DH
k Dk = −→wH

k U‖Σ
−1
s Σ−1s UH

‖
−→w k (24)

Both CH
k Ck and DH

k Dk are real numbers. ∆ωk in (15) can
be expressed as

∆ωk =

(
CH

k ∆XDk

)
−
(
CH

k ∆XDk

)H
2j

= Im
(
CH

k ∆XDk

)
(25)

where Im(z) is the imaginary part of complex variable z. As
a first-order approximation, (22) and (25) imply that ∆ωk is
a real Gaussian scalar distributed as

∆ωk ∼ N
(

0,
σ2

2
(DH

k Dk)(CH
k Ck)

)
(26)

D. Joint distribution of angular shifts {∆ωk}k

We now prove that angular shifts {∆ωk}k are jointly Gaus-
sian for a first-order analysis. Denote by Dk,p the pth element
of vector Dk and by ∆Xp the pth column of matrix ∆X ,
1 ≤ p ≤ P . Define K arbitrary real coefficients {αk}Kk=1.
Using (25), the weighted sum

∑
k αk∆ωk can be expressed

as ∑
k

αk∆ωk =
∑
k

αk Im

(∑
p

Dk,pC
H
k ∆Xp

)

=
∑
p

Im

((∑
k

αkDk,pC
H
k

)
∆Xp

)
=
∑
p

Im
(
βH
p ∆Xp

)
(27)

The second equality in (27) follows from the linearity of the
imaginary operator. While row vector βH

p is N -dimensional,
it is a weighted sum of only K vectors Dk,pC

H
k . Moreover,

there are P such vectors {βH
p }p. Therefore, the problem of

selecting K coefficients {αk}k so that all vectors {βH
p }p are

zero vectors admits NP equations. It is thus overdetermined
and admits no non-trivial solutions for {αk}k almost surely.
Since the entries of vectors {∆Xp}p are complex Gaussian,
and assuming set {αk}k is non-trivial,

∑
k αk∆ωk in (27)

is a weighted sum of real Gaussians and is thus Gaussian-
distributed. Therefore, angular shifts {∆ωk}k in (26) are
jointly Gaussian.

Given that variables {∆ωk}k are jointly Gaussian, the joint
distribution is fully characterized by the mean vector and
covariance matrix. All angular shifts {∆ωk}k have zero mean
as in (26). For the covariance matrix, we evaluate E[∆ωk∆ωl]
using (25):

4E[∆ωk∆ωl] = E[(CH
k ∆XDk)(CH

l ∆XDl)
H ]

+ E[(CH
k ∆XDk)H(CH

l ∆XDl)]

− E[(CH
k ∆XDk)H(CH

l ∆XDl)
H ]

− E[(CH
k ∆XDk)(CH

l ∆XDl)]

(28)

CH
k ∆XDk is a weighted sum of the entries of ∆X . These

entries are independent, have zero mean and are circularly
symmetric. Thus, the last two expectations in (28) are zero.
By linearity of the expectation we have

4E[∆ωk∆ωl] = CH
k E[∆XDkD

H
l ∆XH ]Cl

+DH
k E[∆XHCkC

H
l ∆X]Dl

(29)

Note the following:

E[∆XDkD
H
l ∆XH ] = E[(

∑
p

Dk,p∆Xp)(
∑
p

D∗l,p∆XH
p )]

=
∑
p

∑
p′

Dk,pD
∗
l,p′E

[
∆Xp∆XH

p′

]
=
∑
p

Dk,pD
∗
l,pσ

2IN×N

= σ2
(
DH

l Dk

)
IN×N

(30)
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where the second equality in (30) is implied by the linearity
of expectation, while the third equality is obtained by utilizing
the distribution of ∆X in (16). Similarly,

E[∆XHCkC
H
l ∆X] = σ2

(
CH

l Ck

)
IP×P (31)

Plugging (30) and (31) in (29) we have

E[∆ωk∆ωl] =
σ2

4

[(
DH

l Dk

) (
CH

k Cl

)
+
(
DH

k Dl

) (
CH

l Ck

)]
=
σ2

2
Re
((
DH

l Dk

) (
CH

k Cl

))
(32)

where Re(z) is the real part of complex variable z. For the
case k = l, note that (32) becomes the variance of ∆ωk as
in (26). The matrix holding E[∆ωk∆ωl], 1 ≤ k, l ≤ K in (32)
defines the first-order approximation of the covariance matrix
of the joint distribution of {∆ωk}k.

III. NOISE AVERAGING

We derive an upper bound on the variance of ∆ωk in (26).
Using (24),

DH
k Dk =

∣∣∣Σ−1s UH
‖
−→w k

∣∣∣2
2

=
K∑

k′=1

1

σ2
k′

∣∣U‖Hk′
−→w k

∣∣2
2

(33)

where |v|2 is the L2 norm of vector (or scalar) v, set {σk}k is
the set of K non-zero singular values of X along the diagonals
of Σs, and U‖k is the kth column of U‖. By Cauchy-Schwarz
inequality, we obtain

DH
k Dk ≤

K∑
k′=1

1

σ2
k′

∣∣U‖k′

∣∣2
2
|−→w k|

2
2 = N

(
K∑

k′=1

1

σ2
k′

)
(34)

where the columns of U‖ have unit norm, and |−→w k|
2
2 = N

using (11).

Moreover, (23) implies

(CH
k Ck)−1 =

∣∣∣UH
⊥
−→w (1)

k

∣∣∣2
2

=
∣∣∣UH
⊥
−→u −→w (1)

k

∣∣∣2
2

∣∣∣−→w (1)
k

∣∣∣2
2

(35)

where −→u −→w (1)
k

is a unit vector in the direction of −→w (1)
k .

Using (13),

∣∣∣−→w (1)
k

∣∣∣2
2

= 1 + 22 + · · ·+ (N − 1)2

=
(N − 1)3

3
+

(N − 1)2

2
+

(N − 1)

6

(36)

(35) becomes

(CH
k Ck)−1 ≥

∣∣∣UH
⊥
−→u −→w (1)

k

∣∣∣2
2

(N − 1)3

3
= pN,k

(N − 1)3

3
(37)

We now prove by contradiction that pN,k is strictly positive.
Assume pN,k = 0. By definition of pN,k and since spaces
U⊥ and U‖ are orthogonal, −→w (1)

k has to be spanned by the
columns of U‖. Let vector −→v hold the first K entries of −→w (1)

k
and matrix M hold the first K rows of U‖. M is a K × K
Vandermonde matrix and is full rank. We therefore have

U‖ ×
(
M−1−→v

)
= −→w (1)

k (38)

Denote by −→u H
‖,n the nth row of U‖ and −→w (1)

k (N) the N th entry

of −→w (1)
k . From (38),∣∣∣−→w (1)
k (N)

∣∣∣
2

=
∣∣∣−→u H
‖,N ×

(
M−1−→v

)∣∣∣
2
≤ K×

∣∣M−1−→v ∣∣
2

(39)

The inequality in (39) follows from Cauchy-Schwarz relation
and the fact that all entries of U‖ have norm less than unity
since the columns of U‖ are orthonormal. From (13), the left
hand side of (39) is unbounded as N grows, while the right
hand side of (39) is independent of N . This is a contradiction.
Therefore, pN,k in (37) is strictly positive. For a fixed number
of transmitters K we lower-bound pN,k by a positive constant.
Combining (26), (34) and (37), we obtain an upper limit on
the variance of angular shift ∆ωk that drops for higher signal
powers {σk′}k′ relative to the noise power σ2. It also decays
quadratically in the number of observed packets N .

IV. NUMERICAL EXPERIMENTS
In this section we verify the theoretical results for the

individual and joint distributions of the angular perturbations
of the roots, which are computed for the purpose of
identifying the set of active transmitters as discussed in [3].
We also verify the noise-averaging effect of section III.
Consider two simultaneously active transmitters 1 and 2
of respective characteristic complex exponentials r1 and r2
where ω1 = ∠r1 = π/4 and ω2 = ∠r2 = 3π/4. Each
transmitter sends a packet consisting of a real random
sequence of ±1s and of length P = 1000. Because of
collision, retransmissions are necessary. The receiver stacks
the N observed packets in matrix YN and computes estimates
of angles ω1 and ω2 as described in [3]. The SNR is defined
as SNR = 10 log10(1/σ2), where σ2 is the noise power as
in (16). Each numerical experiment is repeated 1000 times
and mean-statistics are computed.

Fig. 1: Theoretical and numerical results of the mean squared
error E[∆ω2

1 ] versus the number of received packets N for
two SNR conditions: SNR = 0dB and SNR = 30dB. K = 2,
ω1 = π/4, ω2 = 3π/4.

In figure 1 we plot the MSE for estimating ω1 versus N
for two SNR conditions. As expected, the MSE decays for
larger values of N (noise-averaging effect) and higher SNR.
Moreover, we compute the theoretical curves using (26).
The matching between the theoretical and simulation curves
indicates that the first-order perturbation analysis is accurate
for predicting the statistics of ∆ωk.
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Fig. 2: Distribution of (∆ω1 + ∆ω2)/2 for K = 2, N = 7,
SNR = 0dB, ω1 = π/4, ω2 = 3π/4.

Figure 2 shows a histogram of the average of the two angular
shifts ∆ω1 and ∆ω2. The plot fairly has a Gaussian bell
shape. This is expected for a weighted sum of jointly Gaussian
random variables as we derived in section II-D. Moreover, for
the plot in figure 2, the simulated MSE is 1.0679e-05. By
computing the covariance matrix of ∆ω1 and ∆ω2 using (32),
the theoretical MSE is given by

E

[(
∆ω1 + ∆ω2

2

)2
]

=
(
0.5 0.5

)
× Cov

(
∆ω1

∆ω2

)
×
(

0.5
0.5

)
= 1.1871e-05

(40)

which is of the same order as the simulated MSE.

Finally, figure 3 shows reduced symbol error rate (SER) upon
decoding the collided packets for a larger number of stacked
packets N and higher SNR values.

Fig. 3: Symbol error rate versus SNR for K = 2, ω1 = π/4,
ω2 = 3π/4, and N ∈ {3, 4, 5, 7}.

V. CONCLUSION

Distributions for the perturbations of the roots computed
to identify the active user set are derived and verified in
simulations. The algorithm of [3] becomes more robust for
higher SNR values and upon noise-averaging. A future re-
search direction is to integrate the derived distributions into an
optimal method for blind user identification. Another research
direction is to do throughput analysis due to the additional
retransmissions incurred by noise-averaging.
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