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Abstract—Quantitative image-based analysis is a relatively new
way to address challenges in automotive tribology. Its inclusion
in tire-ground interaction research may provide innovative ideas
for improvements in tire design and manufacturing processes.
In this article we present a novel and robust technique for
segmenting the area of contact between the tire and the ground.
The segmentation is performed in an unsupervised fashion with
Graph cuts. Then, superpixel adjacency is used to improve
the boundaries. Finally, a rolling circle filter is applied to the
segmentation to generate a mask that covers the area of contact.
The procedure is carried out on a sequence of images captured in
an automatic test machine. The estimated shape and total area of
contact are built by averaging all the masks that have computed
throughout the sequence. Since a ground-truth is not available,
we also propose a comparative method to assess the performance
of our proposal.

Index Terms—Automotive tribology, Graph cuts, Ray feature
error, Rolling circle filter, Superpixels, Tire footprint, Unsuper-
vised segmentation.

I. INTRODUCTION

The area of contact between the tire and the ground,
commonly named tire footprint, plays an important role in
tire performance. The shape and size depend on many factors
such as characteristics of the road, tire inflation, and the
forces applied to the tire. The aspect ratio of the tire footprint
influences the driving characteristics of a vehicle. For instance,
a low-aspect ratio (the tire footprint is short and wide) is very
responsive to handling and traction. By contrast, a higher-
aspect ratio (the tire footprint is long and narrow) allows
drivers to handle in a more predictable manner [1].

A common way to capture a tire footprint is through the
use of an automatic test machine (ATM). In an ATM, a tire
rolls on a glass plate while its movement is recorded using a
high-speed camera. The images are acquired in grayscale and
the darkest levels depict the tire footprint (see Figure 1).

Inspection of a tire footprint is a time consuming task.
There have been some efforts to automate it. In [2]–[4], the
tire footprint segmentation is based on a thresholding method,
(e.g. Otsu [5]); while in [6], a combination of a thresholding
method and wavelets is proposed. However, due to changes
in lighting conditions and acquisition, a thresholding method
is not always robust enough to segment the tire footprint
properly.

A more sophisticated solution is presented in [7] where the
authors use level sets [8] to segment the tire footprint. The
limitation is that the level set needs an initial mask, if the

Figure 1. Three tire footprint sequences captured in an automatic test machine.
A tire rolls under free conditions from right to left on a glass plate while its
movement is captured with a high-speed camera. The darkest area depicts the
tire footprint. Only those frames where the footprint is shown full size are
considered for segmentation. Note that the non-uniform illumination changes
the appearance of the contact area throughout the sequence.

initialization is not close to the observed tire footprint, the
method may lead to a mis-segmentation.

The shape of a tire footprint has a major impact in the
process of designing a tire. Therefore, many studies that have
addressed the topic remain proprietary. On the other hand,
in many cases, the shape of the tire footprint is assumed
rectangular [9]. As a consequence, very little literature devoted
to the analysis and segmentation of the tire footprint exists.

The problem addressed here represents a challenging task.
In a given image, only a small area of the tire is in contact with
the ground. The main drawback is that both the non-contact
area and contact area possess very similar intensity values.

Our main contribution is a novel technique for the auto-
mated segmentation of the tire footprint in an unsupervised
fashion. This technique allows analyzing the shape of the tire
footprint and computing total and effective areas of contact.
Also a new method to compare different segmentation results
without ground-truth is introduced in the paper.
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II. METHODOLOGY

The methodology presented in our study is composed of
several stages. First, in order to minimize the effects of the
illumination, an estimation of the background is calculated and
subtracted. An over-segmentation is computed with superpix-
els that are then clustered using Graph cuts [10]–[12]. Since
the clustering sometimes does not group superpixels lying at
the boundaries of the tire footprint properly, we include an
improvement to alleviate this issue. Finally, a mask that covers
the tire footprint is obtained with a rolling circle filter.

A. Illumination compensation

The first step is to minimize the effects of the non-uniform
illumination. As [13] pointed out, a retrospective method relies
on the current data to estimate an intensity model that can be
used to correct uneven illumination. Although there are many
variants, we use the following formulation:

g (x, y) = f (x, y)− h (x, y) +K (1)

where f(x, y) is the intensity image, h(x, y) is the esti-
mated illumination model and K is a constant that preserves
luminance. A common way to estimate h(x, y) is using a
low-pass version of f(x, y). We take advantage of the im-
age sequence S and compute an average image as follows:
h(x, y) = 1

M

∑M
i=1 fi(x, y) where fi(x, y) ∈ S and M is the

number of images in the sequence.

B. Superpixel partition

In order to include spatial connectivity information, an
initial partition P of superpixels is generated using simple
linear iterative clustering (SLIC) [14].

SLIC seeds n centroids {Cj |j = 1, . . . , n} on a regular grid
in the image plane and clusters pixels using k-means. SLIC
measures the affinity of the pixels with the nearest centroids
based on their intensity and spatial information. The distance
is calculated as D =

√
d2c + (m

2

N2 )d2s.
In this case, dc is the Euclidean distance between the

intensities of the pixel i and the centroid Cj and ds is the
Euclidean distance between the pixel i and the centroid Cj
measured in pixels. N is the size of the superpixel and m is a
regularization parameter that controls superpixel compactness.
In our case, we use the relationship n = H∗W

N2 where H and
W are the height and width of the image, respectively. In our
experiments, we use m = 10 and N = 10 (see Figure 2).

C. Feature extraction

A feature descriptor xp is built for each superpixel p in the
partition P as follows:

xp = [µp, maxp, minp, posxp, Gp,σi ] (2)

where µp is the mean intensity value, and maxp and minp
are the maximum and minimum intensity values within the
selected superpixel p, respectively. posxp is the normalized
position of the centroid of the superpixel p measured on the
X-axis.

(a) (b) (c)

Figure 2. Over-segmentation with SLIC superpixels. The red circles show
the magnified region. (a) N = 10, (b) N = 15, and (c) N = 20.

Since, the intensity and spatial features are not sufficient for
an accurate segmentation, then we include features based on
multi-scale filtering.

Gp,σi = mean

{
g (x, y) ∗ e

− (x2+y2)

2σ2
i

∣∣∣
p

}
(3)

Gp,σi is the mean value of the response to the convolution of
the corrected image g(x, y) with the Gaussian filter e(•) within
the superpixel p. The symbol ∗ represents the convolution and
σi =

√
1.5

i
with i = {0, . . . , 7}.

In summary, a feature descriptor xp is a combination of
first-order intensity statistics, spatial information, and filter
responses which resemble texture characteristics.

All of these features are concatenated one after another to
build a 12-length vector that describes the superpixel p.

D. Clustering

In order to segment the tire footprint, the superpixel partition
P is used as a graph. Every superpixel represents a node and
the neighboring superpixels are connected via the Euclidean
distance between the feature descriptors described in Eq. (2).

Graph cut based methods are a powerful and suitable tool
for segmentation in n-D images [15]. They find the optimal
segmentation with respect to an objective function that con-
tains two terms: region-based and boundary term. The former
evaluates the penalty for assigning a superpixel to a given
region, while the latter evaluates the penalty for assigning two
neighboring superpixels to two different partitions.
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Due to the fact that Graph cuts need hard constraints as
initialization, namely, samples that belong to the object to
be segmented and samples that belong to the background;
then, we use a Gaussian mixture model [16] to estimate
the probability distribution of the tire footprint features and
the different background features. We assume the distribution
of each class is normal p(x) =

∑K
i=1 φ̃iN (µ̃i, σ̃i). The

parameters φ̃i, µ̃i, and σ̃i are estimated using the expectation-
maximization algorithm.

We found experimentally that the optimal number of classes
is four: contact area (cl = 1), slip area (cl = 2), non-contact
area (cl = 3), and control marks (cl = 4). cl represents the
label of the class.

E. Boundary refinement

When a tire rolls under the effects of a power transmission
or braking, local forces cause a deformation of the rubber and
generate a partial slide or tangential displacement within the
contact area. Such a displacement is known as slip region and
is considered part of the tire footprint in this paper.

Due to the smooth transition between the non-contact area
and the slip region, it is not clear where the segmentation
should be stopped. The affinity between the contact area
and the slip region leads Graph cuts to fail in reaching the
boundary of the tire footprint. Hence, we include a refinement
to alleviate this issue and recover more precise boundaries as
follows:
• A list L of superpixels labeled as cl = 1 that lie on the

border of the tire footprint is built.
• A second list E of superpixels labeled as cl = 2 is also

built.
We define superpixel adjacency as: Let x ∈ L and y ∈ E be

two superpixels. We say that x and y are adjacent superpixels,
if they are 8-neighbors.

For each superpixel x ∈ L, the Euclidean distance between
x and its adjacent superpixels y ∈ E is calculated. If the
Euclidean distance d(x, y) ≤ kd ∗ d(µj , y) where {j = 3, 4},
µj is the estimated centroid of the class j, and kd is a scaling
factor. Then, the label of the superpixel y is updated to cl = 1.
It means the border of the tire footprint grows. Otherwise, it
remains unchanged (see Figure 3).

This is an iterative method that stops when there are no more
updated labels. The scaling factor kd = 0.6 was determined
experimentally.

F. Rolling circle filter

The total area (TA) of contact is defined as the elliptical
contact area between the tire and the surface without consid-
ering any grooves [17].

Since not all the TAs are convex, it is not possible to
construct a convex hull.

Inspired by [3], we designed a rolling circle filter to compute
a mask K that covers the segmented tire footprint. The
algorithm uses a circle that rolls around the segmented tire
footprint to calculate the contact points.

(a)

(b) (c)

Figure 3. Boundary refinement. (a) The hexagons represent superpixels in an
image. The black hexagon is the tire footprint, blue and gray hexagons depict
the boundary. The labels of the adjacent superpixels y ∈ E (red) are updated
to cl = 1, if their corresponding distances to the superpixel x ∈ L (gray) is
less than their distances to any other centroid µj . Curve (b) before and (c)
after the refinement.

The implementation of the rolling circle filter is made by
convolving a circle template with the segmented tire footprint.
Then, the contact points are linked with a B-spline in order to
build the mask K that covers the TA (see Figure 4).

III. PERFORMANCE COMPARISON WITHOUT REFERENCE

One of the contributions in this article is a novel method
to compare the segmentation performance of our proposal if
a ground-truth is not available.

When a tire is rolling, the footprint varies to some extend.
This variation is introduced on purpose to alleviate tire noise
issues. Therefore, it is not possible to define a ground truth.
However, the variations of the size and shape do not change
dramatically. Under this assumption, we consider that the
shape and total area remain almost constant throughout the
image sequence; then, it is possible to define a quality of
segmentation.
• A family of masks {Ki|i = 1, . . . , M} that covers the

TAs is calculated independently throughout the image
sequence S, see Figure 5(a).

• These masks are aligned using an affine transformation
f : K → B (see Figure 5(b)). We consider the mask
with the minimum eccentricity Kε = minε{Ki} as the
reference for the alignment.
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Table I
COMPARISON PERFORMANCE OF OUR PROPOSAL, GAUSSIAN MIXTURE MODEL, AND K-MEANS++ . FIVE IMAGE SEQUENCES WERE USED TO TEST THE

METHODS. WE SHOW THE AVERAGE ERROR MEASURED BETWEEN THE MEAN SHAPE Kµ AND THE MASKS Ki . RFE IS A NORMALIZED METRIC
BETWEEN [0, 1) WHERE 0 IS THE BEST MARK. DI IS ALSO A NORMALIZED METRIC BETWEEN [0, 1] WHERE 1 IS THE BEST SCORE. BOLD VALUES

REPRESENT THE BEST RESULTS.

Ray feature error (RFE) [18] Dice index (DI) [19]
GMM | KM++ | Our proposal | GMM | KM++ | Our proposal |

Im. Seq. #1 0.0086 0.0412 0.0078 0.9843 0.9233 0.9861

Im. Seq. #2 0.0059 0.0318 0.0052 0.9896 0.9429 0.9907

Im. Seq. #3 0.0246 0.0204 0.0097 0.9474 0.9609 0.9825

Im. Seq. #4 0.0175 0.0283 0.0097 0.9664 0.9551 0.9826

Im. Seq. #5 0.0046 0.0199 0.0047 0.9916 0.9615 0.9916

Figure 4. Rolling circle filter. A circle template rolls around a segmented tire
footprint (red) to calculate contact points (blue line) and build a mask that
covers the total area of contact.

• A statistic model described by the mean shape Kµ and
the first eigenvalues K−λ and K+λ is built.

Kµ is considered as the ground-truth of the sequence S
(see Figure 5(c)). Therefore, it is possible to evaluate the
segmentation error between Kµ and all Ki. Here, we use two
metrics: Ray feature error (RFE) [18] and Dice index (DI)
[19]. RFE is a normalized metric between [0, 1) where 0 is
the best mark. DI is also a normalized metric between [0, 1]
where 1 is the best score.

IV. MATERIALS & EXPERIMENTS

In order to validate our proposal, five image sequences were
recorded on the ATM. The sequences include summer and
winter tires and were capture under free rolling conditions. For
each sequence, 15 frames of size 1024× 1280 were extracted
at different times while the tires were rolling from right to left
and saved as grayscale images. The segmentation performance
was evaluated between the mean total area Kµ and the 15
masks Ki that correspond to the same sequence.

(a) (b) (c)

Figure 5. Generation of the ground-truth. (a) The masks Ki are calculated
throughout the image sequence S. (b) Ki are aligned and the mean shape
Kµ and first eigenvalues K−λ (green) and K+λ (red) are computed. The
image shows the aligned masks over a tire footprint. (c) Kµ is used as the
ground-truth of the sequence S.

For RFE, the sample points were collected every 30◦. We
also conducted experiments with unsupervised clustering using
two standard methods: Gaussian mixture models (GMM) [16]
and K-means++ (KM++) [20]. For each of them, we chose
experimentally the best parameters in terms of Dice index
and Ray feature error. The comparison between the standard
methods and our proposal is summarized in Table I.

V. CONCLUSIONS

We presented a novel and robust technique that allows
analyzing the shape of a tire footprint captured in an automatic
test machine under free rolling conditions. The main difficulty
is the non-uniform illumination. Thus, we included a pre-
processing step that estimates the background and minimizes
the effects of the lighting conditions. However, further research
need to be done to improve background estimation because in
some cases an adjustment of the parameters is needed due to
the changes in the color of the rubber. Also, the inclusion of
superpixels improved the coherence of the segmentation.

It is well-known that unsupervised methods are not as
powerful as supervised methods. However, the methodology
presented here generates a very close estimation of the real
tire footprint. Our proposal outperformed the results obtained
with standard clustering methods such as GMM and KM++.
Since the technique does not assume any a priori knowledge
of the image, it is possible to extend its application to other
fields or modalities.
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