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Abstract—This paper proposes a novel lossless image coding
method which directly estimates a probability distribution of
image intensity values on a pel-by-pel basis. In the estimation
process, several examples, i.e. a set of pels whose neighborhoods
are similar to a local texture of the target pel to be encoded,
are gathered from a search window located on an already
encoded part of the same image. Then the probability distribution
is modeled as a weighted sum of the Gaussian functions
whose center positions are given by the individual examples.
Furthermore, model parameters that control shapes of the
Gaussian functions are numerically optimized so that the
resulting coding rate of the image intensity values can be a
minimum. Simulation results indicate that the proposed method
provides comparable coding performance to the state-of-the-art
lossless coding schemes proposed by other researchers.

Index Terms—lossless image coding, template matching,
probability model, numerical optimization

I. INTRODUCTION

Most efficient image coding techniques consist of two
processing stages: de-correlation and entropy coding. The
purpose of the first stage is to remove redundancy of the
given image signal by some reversible numerical operations
such as linear transform and prediction. In the case of lossless
coding, pel-wise adaptive prediction is often employed and
no quantization process is applied to the resulting prediction
residuals. At the second stage, a probability distribution of
the de-correlated signal is estimated by a non-parametric [1]
or a parametric [2] probability model, and either Huffman
or arithmetic coding is utilized to generate a compressed
bitstream under the assumption of the estimated model. In
this framework, de-correlated signals obtained through the first
stage, namely transform coefficients or prediction residuals,
are usually expected to follow a symmetric single-peaked
distribution centered around zero as shown in Fig.1 (a). Since
the narrower distribution tends to show lower entropy, least
squares (LS) [3] or weighted least squares (WLS) [4], [5]
is generally used as a criterion for designing the adaptive
predictors. By contrast, in our past study, a coding rate of the
prediction residuals was iteratively minimized in the predictor
design process [6]. In either case, the probability distribution
is modeled in a domain of the de-correlated signal and only
the single-peaked probability distribution is considered.

 

 

Input image 

Probability  

��

���������������������������������������������������������������������
���������������������������������������������������������������������
���������������������������������������������������������������������
���������������������������������������������������������������������
De-correlation 

�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������

Entropy 
coding 

Bitstream 

Prediction residuals 

 

 

Input image 

��

�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������

Entropy 
coding 

Bitstream 
Image intensity 

�����������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������
Probability modeling 

Probability  

(a) Conventional method (b) Proposed method

Fig. 1. Conceptual diagrams of the conventional and proposed methods.

In this paper, we proposed a novel lossless image coding
method which integrates the above two processing stages. In
other words, the probability distribution is modeled in an
image intensity domain without any de-corelation process.
A similar idea was presented in [7], where peak positions
of the probability distribution were given by multiple linear
predictors. This means only local information of the image
signal was used to determine the peak positions through
the prediction process using causal neighbors. On the other
hand, the proposed method exploits non-local information
that is gathered from an already encoded area of the same
image via a template matching algorithm. Such non-local
information can well capture self-similarity inherent in natural
images and has been utilized in image denoising [8], [9].
Recently, it is also used in image coding applications [10],
[11]. Furthermore, model parameters that control a shape of
the probability distribution model are numerically optimized to
minimize the resulting coding rate. This framework allows us
to model complicated probability distributions having multiple
peak positions as shown in Fig.1 (b).

II. TEMPLATE MATCHING

In order to exploit non-local information on the image
signal, the proposed method performs template matching in a
search window placed on the already encoded area. In Fig.2,
pk ∈ Z2 indicates a target pel being encoded in the raster
scan order and a size of the search window is determined by
the maximum distance S from the target pel in horizontal and
vertical directions. A template patch is defined by twelve pels
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Fig. 3. Arrangement of pels in a template patch.

in a causal neighborhood {pk +ri | i = 1, 2, . . . , 12} with the
distance of ||ri||1 ≤ 3, where a vector ri ∈ Z2 denotes the
position of the i-th pel relative to pk as shown in Fig.3. For
every pel q in the search window, we evaluate similarity of
the local textures by the following cost function:

Jk(q) =

12∑
i=1

wi ·
∣∣f(q+ri)−µ(q)−f(pk+ri)+µ(pk)

∣∣
+ λd ·||q − pk||1, (1)

where f(q) represents an image intensity value at the pel q
and µ(q) is a weighted local mean within the adjacent patch:

µ(q) =
12∑
i=1

wi · f(q + ri). (2)

In both the equations, a weighing factor wi is given by the
Gaussian function with a constant value of σt = 1.25.

wi =
exp

(
− 1

2 ||ri||
2
1/σ

2
t

)∑12
j=1 exp

(
− 1

2 ||rj ||
2
1/σ

2
t

) . (3)

The first term of the right hand side of Eq.(1) can be seen
as a weighted version of the Zero-mean Sum of Absolute
Differences (ZSAD) [11]. We use Eq.(3) to give heavier
weights around the target pel and its counterpart. Moreover,
the second term is added with the intention of giving small
priority to spatially near positions in the search window.

As a result of this template matching, M pels are
gathered in ascending order of the cost function and
considered to be a set of examples containing beneficial non-
local information: Ek = {qk,1, qk,2, . . . , qk,M}. From these
examples, M estimations of the image intensity values are
calculated by compensating their local means:

fk,m = f(qk,m)−µ(qk,m)+µ(pk), (m=1, 2, . . . ,M). (4)
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Fig. 4. Probability distribution model.

III. PROBABILITY DISTRIBUTION MODEL

The above estimation fk,m obtained from the past example
qk,m is expected to be close to f(pk) if the corresponding cost
function dk,m = Jk(qk,m) is sufficiently small. According
to this expectation, a probability distribution of the image
intensity f at the target pel pk under the condition of given
Ek is modeled as weighted sum of the Gaussian functions.

Pr(f |Ek, uk) ∝ P (f |Ek, uk) =
M∑

m=1

gk,m(f) + ε, (5)

gk,m(f) = hk,m ·wk,m ·exp
(
−w2

k,m ·(f − fk,m)2
)
, (6)

where uk is a locally calculated feature quantity related to
context of the target pel pk and its definition will be described
later. In addition, ε is a small positive constant to avoid zero
probabilities and set to 2−20 in this paper. The shape of the
Gaussian function gk,m(f) is determined by three parameters
hk,m, wk,m and fk,m which respectively associated with
height, width and a peak position of the Gaussian function
as shown in Fig.4. We consider that the parameter hk,m has a
connection with reliability of the example qk,m, and therefore
define it as a parametric function of dk,m.

hk,m = exp(−a1 · dk,m). (7)

Similarly, the parameter wk,m is considered to be affected by
uk in addition to dk,m, and defined as:

wk,m = a0 ·exp(−a2 · dk,m)·exp(−a3 · uk). (8)

Consequently, occurrence probabilities for all the possible
values of f(pk) can be calculated by normalizing Eq.(5). In
the case of an 8-bit grayscale image, we obtain

Pr(f(pk) |Ek, uk) =
P (f(pk) |Ek, uk)∑255
f=0 P (f |Ek, uk)

. (9)
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By assuming these probabilities, the number of coding bits
required for entropy coding of the actual value of f(pk) can
be approximated as:

L(pk) = − log2 Pr(f(pk) |Ek, uk)

=
1

ln 2

ln(255∑
f=0

P (f |Ek, uk)

)
−lnP (f(pk)|Ek, uk)

.
(10)

This quantity reflects local fitness of the given model and is
utilized for the definition of uk:

uk =
12∑
i=1

wi ·L(pk + ri). (11)

IV. OPTIMIZATION OF MODEL PARAMETERS

The shape of the above probability distribution model is
controllable by four parameters {an |n = 0, . . . , 3}. Here,
we want to optimize these model parameters to reduce the
resulting coding rate in a certain region Ω. Hence, we define
the objective function as:

J(Ω) =
∑
pk∈Ω

L(pk) + λp

3∑
n=0

(an − αn)
2, (12)

where αn is an initial value of the model parameter an and λp
is a weight of the regularizer which prevents deviation of the
parameters from their initial values. We use a fixed value of
λp = 0.1 in this paper. Minimization of the above objective
function is formulated as a nonlinear optimization problem
with respect to the four model parameters. The objective
function is differentiable by each model parameter and its
gradient component can be calculated by:
∂

∂an
J(Ω)

=
1

ln 2

∑
pk∈Ω

(∑255
f=0

∂
∂an
P (f |Ek, uk)∑255

f=0 P (f |Ek, uk)
−

∂
∂an
P (f(pk)|Ek, uk)

P (f(pk)|Ek, uk)

)
+ 2λp(an−αn), (13)

where

∂
∂a0
P (f |Ek, uk)=

1

a0

∑
pk∈Ω

[
1−2(f−fk,m)2 ·w2

k,m

]
·gk,m(f),

(14)
in the case of n = 0, for example. Therefore, we can use
a gradient-based numerical optimization algorithm such as
the quasi-Newton method [12]. In practice, we divide the
image into square blocks of N ×N pels, and optimize the
model parameters in each block by regarding the block as
the region Ω. Strictly speaking, the feature quantity uk also
depends on the model parameters and it must be considered
in calculation of Eq.(14). For simplicity, however, the quasi-
Newton method is performed under the condition of fixed uk
and alternately iterated with re-calculation of Eq.(11) for
all the pels in the block Ω. Finally, the optimized model
parameters are linearly quantized with 8-bit accuracy in the
ranges shown in Table I, and encoded as side-information.

TABLE I
QUANTIZATION RANGES AND INITIAL VALUES OF THE MODEL

PARAMETERS.

Parameter Quantization range Initial value (αn)

a0 [0.0, 8.0] 2.0
a1 [−1.0, 3.0] 1.0
a2 [−1.0, 2.0] 0.5
a3 [−1.0, 2.0] 0.5

Camera Couple Noisesquare

Airplane Baboon Lena

Lennagrey Peppers Shapes

Balloon Barb

Barb2 Goldhill

Fig. 5. Test images.

V. EXPERIMENTAL RESULTS

The proposed method was implemented with a fast multi-
symbol arithmetic coding technique called range coder [13]
and tested for grayscale images shown in Fig.51.

In the template matching, the search window size S and
the weight λd for the distance term in Eq.(1) are important
parameters affecting properties of the obtained examples. We
therefore investigated proper combinations of both parameters
in terms of the average coding rates. In this experiment, the
side length of the square block Ω and the number of the
examples are fixed to N = 64 and M = 64, respectively. As
we can see in Fig.6, better results are obtained when S > 72
and λd > 0.01. According to this observation, the settings of
S = 80 and λd = 0.03 will be adopted in the rest of the paper.

The number of examples M = |Ek| is another important
parameter concerning accuracy of the probability model.
Figure 7 plots relationship between the average coding
rate and the parameter M when the side length of the

1This dataset was used in [7] and is currently available via Internet Archive:
https://web.archive.org/web/*/http://www.csse.monash.edu.au/∼bmeyer/tmw/
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Fig. 6. Average coding rate as a function of two parameters S and λd.
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Fig. 7. Average coding rate as a function of the number of examples.
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Fig. 8. Average coding rate as a function of the block size.

block Ω is set to N = 64. The coding efficiency is rather
sensitive to this parameter mainly due to unstable behavior
of the optimization process for unnatural images such as
‘Noisesquare’. Nevertheless, M = 64 seems to be a reasonable
choice in the average sense.

Furthermore, we tested different size of the block Ω while
setting M = 64. It is shown in Fig.8 that optimizing the model
parameters for each block of 64× 64 pels gives better trade-
off between the number of coding bits spent for the image
signal and the amount of the side-information on the model
parameters.

Figure 9 shows some examples of the probability distri-
butions estimated by the proposed method. A blue dotted
line indicates an actual image intensity value at each sample
position. We can see that single-peaked distributions with

 (157, 49) 

(138, 54) 

(161, 65) 

(a) Enlarged view of ‘Camera’

0 64 128 192
0.000

0.050

0.100

0.150

0.200

Image intensity

P
ro

b
ab

il
it

y

(b) pk = (157, 49)

0 64 128 192
0.000

0.010

0.020

0.030

0.040

Image intensity

P
ro

b
ab

il
it

y

(c) pk = (138, 54)

0 64 128 192
0.000

0.010

0.020

0.030

0.040

Image intensity

P
ro

b
ab

il
it

y

(d) pk = (161, 65)

Fig. 9. Examples of the estimated probability distributions.

different sharpness as well as a much complicated distribution
with multiple peaks can be modeled by the proposed method.

Finally, coding rates of the proposed method are compared
with the other lossless coding schemes: MRP (version 0.5) [6],
Vanilc WLS D (version 1.0) [14], TMW (version 0.51) [7],
Glicbawls [5], WebP lossless (version 0.6.0) [15], FLIF
(version 0.3, non-interlaced) [16], JPEG-LS [17] and
JPEG 2000 [18]. In Table II, the best and the second best
coding rates are shown as bold and underlined numbers for
each image, respectively. It is demonstrated that the proposed
method attains comparable coding performance to Vanilc and
TMW which are known as the state-of-the-art lossless image
coding schemes. However, there is a certain performance gap
against our MRP method which had been drastically improved
from its earlier version [19].
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TABLE II
COMPARISON OF CODING RATES (BITS/PEL).

Image Size Proposed MRP Vanilc WLS D TMW Glicbawls WebP lossless FLIF JPEG-LS JPEG 2000
Camera 3.960 3.949 3.995 4.098 4.208 4.274 4.285 4.314 4.535
Couple 256×256 3.415 3.388 3.459 3.446 3.543 3.703 3.677 3.699 3.915
Noisesquare 5.298 5.270 5.159 5.542 5.415 5.203 5.335 5.683 5.634
Airplane 3.632 3.591 3.575 3.601 3.668 3.894 3.794 3.817 4.013
Baboon 5.727 5.663 5.678 5.738 5.666 5.891 6.078 6.037 6.107
Lena 4.330 4.280 4.246 4.300 4.295 4.514 4.642 4.607 4.684
Lennagrey 512×512 3.944 3.889 3.856 3.908 3.901 4.145 4.252 4.238 4.303
Peppers 4.267 4.199 4.187 4.251 4.246 4.495 4.595 4.513 4.629
Shapes 0.715 0.685 1.302 0.740 2.291 1.023 0.722 1.214 1.926
Balloon 2.673 2.579 2.626 2.649 2.640 2.925 2.856 2.904 3.031
Barb 3.997 3.815 3.815 4.084 3.916 4.547 4.500 4.691 4.600
Barb2 720×576 4.287 4.216 4.231 4.378 4.318 4.668 4.656 4.686 4.789
Goldhill 4.276 4.207 4.229 4.266 4.276 4.464 4.518 4.477 4.603
Average 3.886 3.826 3.874 3.923 4.030 4.134 4.147 4.222 4.367

VI. CONCLUSION

In this paper, we have proposed a lossless image coding
method based on optimization of the probability model used
for entropy coding of image intensity values. The model
is defined by the weighted sum of the Gaussian functions
whose peak positons are determined via template matching
on the already encoded causal area. Moreover, several model
parameters that control height and width of the individual
Gaussian functions are numerically optimized to minimize the
resulting coding rate on a block-by-block basis. Experimental
implementation of the proposed method provided promising
coding performance, though its framework is quite different
from the conventional schemes typically based on prediction
techniques. It is worth noting that some of the examples
used in the probability modeling can be replaced by predicted
values calculated from local neighbors [20]. Collaboration
with efficient prediction techniques such as [6] will be a part
of our future studies.
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