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Abstract—We introduce a path-augmentation step to the stan-
dard orthogonal matching pursuit algorithm. Our augmentation
may be applied to any algorithm that relies on the selection
and sorting of high-correlation atoms during an analysis or
identification phase by generating a “path” between the two
highest-correlation atoms. Here we investigate two types of path:
a linear combination (Euclidean geodesic) and a construction
relying on an optimal transport map (2-Wasserstein geodesic).
We test our extension by generating k-sparse reconstructions of
faces using an eigen-face dictionary learned from a subset of the
data. We show that our method achieves lower reconstruction
error for fixed sparsity levels than either orthogonal matching
pursuit or generalized orthogonal matching pursuit.

Index Terms—matching pursuit, basis mismatch, optimal
transport, k-sparse representation, signal reconstruction

I. INTRODUCTION

Compressive sensing (CS) is a methodology that enables
higher-resolution digital sampling of natural phenomena by
leveraging good signal models to reconstruct signals that
are undersampled according to classical Nyquist sampling
theory [3], [9], [12]. In this case, “good” models are those
that can sparsely represent signals as linear combinations of
relatively few atoms drawn from a dictionary. Signals that
can be represented to within some acceptable error tolerance
using at most k atoms are defined as k-sparse relative to
that dictionary. CS theory predicts, to a level of probabilistic
certainty, successful reconstruction of an undersampled signal
when the underlying true signal satisfies upper limits on
sparsity relative to a given dictionary [4], [8], [17]. As a result,
significant effort has been spent on designing dictionaries or
developing algorithms that are capable of learning dictionaries
that are highly representative of the expected signal class [1],
[11].

A persistent problem exists, however, because even if the
underlying signal model could perfectly represent the signal
with a single atom, the atoms must be discretely sampled from
the model and therefore, with high probability, will fail to
represent any given signal component exactly. For example,
a 1-D sinusoidal signal composed of a single tone is well-
represented by a sinusoidal signal model, but if the frequency
of the signal falls between the discrete Fourier frequencies
of a given Fourier basis then the number of non-zero Fourier
coefficients can actually be quite large [24]. Guarantees on

successful reconstruction of undersampled signals begin to fail
when the assumption of sparsity is violated which can lead
to the introduction of artifacts at best or complete failure to
reconstruct at worst. This “basis mismatch” problem has been
considered in the literature [7], [10], [14], [29], [31] with some
success in the case of 1-D sinusoidal signals where a search
over the frequencies residing between the two Fourier atoms
with the largest correlation can find the exact representative
atom [27].

Here, we propose two methods for constructing better
exemplars from an underlying dictionary: a linear combination
of the two most-correlated atoms (Euclidean geodesic) and
a construction relying on the optimal transport map between
said atoms (2-Wasserstein geodesic) [18]. This “path-based”
augmentation can be applied to any reconstruction algorithm
that relies on the selection and sorting of high-correlation
atoms during an analysis or identification phase. In particular,
we consider the matching pursuit (MP) family of algorithms
[6], [23] which contains a number of algorithm variations
predicated on the selection of high-correlation atoms.

We illustrate here that augmenting MP with our path-
based modification leads to lower reconstruction errors for
fixed sparsity levels. We demonstrate these improvements by
constructing sparse face representations from a learned eigen-
face dictionary. Such an unstructured dictionary, although not
state-of-the-art, works well for illustrating and testing concepts
on an easily understood data set. We compare our method
to traditional MP algorithm variations and show significantly
reduced k-sparse reconstruction errors.

We begin with a brief summary of matching pursuit and
describe paths between atoms in Section II. In Section III
we present the proposed algorithm Path Orthogonal Matching
Pursuit (POMP). Next, in Section IV we describe a popular
face data set and the experiment it is used in to evaluate al-
gorithm performance. Results of the experiment are presented
in Section V. Finally, we conclude with a discussion of the
results as well as directions of future work in Section VI.

II. BACKGROUND AND RELATED WORK

A. Matching Pursuit

For a fixed degree of sparsity, consideration of all possible
atom combinations of that order is computationally intractable.
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A popular work-around of this combinatorial optimization
problem is an algorithm called Matching Pursuit (MP) [23].
Standard MP begins by greedily searching for the best re-
construction produced from a single atom where “best” is
determined by the magnitude of the inner product between the
signal and the dictionary atoms. The optimal atom is scaled
by the length of the projection of the signal onto the space
spanned by the optimal atom and is then subtracted from the
original signal. This residual image is then fit in the same
greedy way, updated, and the process repeats. k iterations of
MP yields a k-sparse representation with some associated final
error/residual Rk.

Several variations of MP exist [13], [22], [25], [26], [28],
but in general the identification step in an iteration of an MP-
based algorithm refers to determining which atom(s) is(are)
closest to the current residual. Augmentation is used to de-
scribe the step of adding the atom(s) identified to the support
of the reconstruction. Finally, each pursuit-type algorithm is
concluded by a residual update. The fundamental difference
between MP and OMP (as well as OMP derivatives) is that
in OMP the residual is updated by projecting the image onto
the orthogonal complement of the span of the current support
which has been shown to produce better results.

B. Paths Between Atoms

A fundamental component of our approach is the construc-
tion of a path between the two closest dictionary atoms. A
path is a smooth map from the closest dictionary atom to
the second-closest dictionary atom that is parameterized by a
variable t ∈ [0, 1]. Explicitly, a path p is defined as

p(D1,D2, t) : D1 → D2, (1)
s.t. p(D1,D2, 0) = D1 and p(D1,D2, 1) = D2. (2)

An example of a familiar path is the line segment with
endpoints D1 and D2 given by

D = (1− t)D1 + (t)D2, (3)

for t ∈ [0, 1]. This path is called the Euclidean geodesic
between D1 and D2, i.e. the shortest path in Euclidean space.

Another path between images that has gained notoriety in
image processing is induced by an Optimal Transport (OT)
map. Two main versions of OT exist: (1) the Monge OT
problem in which all the intensity located at a pixel in D1 must
be mapped to a single pixel in D2, and (2) the Kantorovich
OT problem which allows for intensities at starting pixels to
be split among multiple destination pixels [32].

Paths produced by OT between images have yielded impres-
sive results and insights in image registration and warping [16],
super-resolution of low-resolution face images [21], and cell
morphology [5]. In recent years a computationally-efficient
approximation to the solution of Monge OT based on the
Radon Cumulative Distribution Transform (RCDT) has been
developed and has shown reduced computational time and
increased performance on multiple tasks in machine learning,
signal processing, and image classification [19], [20]. Due to

the success of these methods, we use the path induced by the
RCDT approximate solution to Monge OT.

A solution to the Monge OT problem between images yields
a vector field of direction vectors that implicitly indicate the
terminal location (in D2) of intensity from a given pixel in
D1. Let

V =

~v1,1 · · · ~v1,m
...

. . .
...

~vn,1 · · · ~vn,m

 (4)

where ~vj,k is the velocity vector for the intensity of the
pixel indexed by (j, k) in D1. Let pV (D1,D2, t) be the path
induced by V. We define

pV (D1,D2, t) = tV(D1,D2) (5)

where tV(D1,D2) indicates movement of the intensity in D1

a partial step (of size t) in the directions given by OT. This
path can be thought of as a set of pixel-wise linear trajectories
approximating a globally nonlinear path between images (the
2-Wasserstein geodesic).

Other viable paths between the atoms exist but at present we
narrow the focus to the two path types defined above. Given a
path between two dictionary atoms we search along the path
for a novel atom which is closer to the test signal than either
of the path end-points. If such a novel atom exists it takes the
place of the single best atom in OMP. Details of the proposed
algorithm are presented in the subsequent section. An example
of samples along linear and OT paths between two images, as
well as the angle formed between the path samples and the
test image, are shown in Fig. 1.

III. THE ALGORITHM: POMP

Path Orthogonal Matching Pursuit (POMP) is a modifica-
tion to the well-known OMP algorithm. Instead of finding a
single nearest dictionary element and removing its contribu-
tion, the two closest dictionary elements are chosen at each
iteration. A path is formed which moves between the two
closest dictionary atoms and an optimal atom is found along
the path. Here, optimality is defined as having the largest-
magnitude inner product with the test image, i.e., the smallest
angle between the pair of images when considered as vectors.
In OMP, only the magnitude of the inner product is considered.
A positive inner product can be interpreted as two images
sharing more in-phase (same sign) intensities than out-of-
phase intensities. When considered from the phase perspective,
it is reasonable to choose to work with atoms sharing the
same signed inner product with the residual. Two atoms with
opposite signed inner products can still be used by multiplying
either by -1.

Let D1 be the dictionary atom having the largest-magnitude
inner product with the test image, T. Define D2 to be the
second-closest dictionary atom to our test image. The simplest,
and perhaps most natural, form of a path is linear. In Section
II we describe a globally linear path (3) and a pixel-wise linear
path (5). When the linear path is used to choose an optimal
atom within an iteration of POMP we refer to it as L-POMP.
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Fig. 1. Examples of samples along the paths between two image atoms
and the angle between the labeled test image and the path samples. Images
along the linear path (Euclidean geodesic) are characterized by the presence
of intensity that matches the combined support from D1 and D2 and simply
shifts intensity magnitude from the support represented by D1 to the support
represented by D2 as t increases. Conversely, the intensity support shifts
between images along the OT path (2-Wasserstein geodesic) as t increases.

The path resulting from solving the OT problem between D1

and D2 selected within an iteration of POMP is denoted by
OT-POMP. For samples along the paths between D1 and D2,
the angle between T may be computed by

θt = cos−1
(

〈Dt,T〉
||Dt||F ||T||F

)
, (6)

where t ∈ [0, 1] parameterizes the distance along the path from
D1 to D2 and ‖A‖F is the Frobenius norm. Let p(D1,D2, t)
be the path from D1 to D2. At each iteration the optimal atom
is given by

Dt∗ = p(D1,D2, t
∗) where t∗ = arg min

t∈[0,1]
θt. (7)

Pseudocode for POMP is provided in Algorithm 1. Lines 2-
4 initialize variables. In line 6 we find the optimal atom and in
line 7 we add its index to the list of support atoms. The same
procedure is performed for the D2 in lines 8-9. The signs of
the inner products of the first and second closest (identified
in line 8) atoms are identified and matched, in lines 10. The
optimal atom along the path between the two nearest neighbors
is selected in lines 11-12 and is then appended to the support
in line 13. Residual updates and updating of indexing variables
are performed in lines 14-17. It should be noted that standard

OMP is simply lines 1-6 and 13-19 where D∗ = D1.
It is important to note that without further constraints

there is no guarantee of a nontrivial minimum angle being
found along the path due to the general non-convexity of the
inner product [15]. With added constraints on the equations
governing Dt it may be possible to prove the existence of
a nontrivial minimum along the path. A rigorous study of
these necessary and sufficient conditions is a focus of ongoing
and future work. Explicit formulas for determining the optimal
path parameter may also exist.

When the dictionary consists of pairwise orthogonal atoms,
MP and OMP are equivalent. If the dictionary atoms are
orthogonal then the linear combination of two of the atoms
will also be orthogonal to all other atoms. For this reason
when an orthogonal dictionary is used, a linear path-based
MP algorithm will be equivalent to a linear path-based OMP
algorithm. When guarantees about orthogonality along a path
cannot be made, the reconstruction using MP can differ from
the OMP reconstruction. The proposed algorithm can be
seamlessly combined with the many OMP variants as well.

Algorithm 1: Path Orthogonal Matching Pursuit
Input: T, the test image and D, the dictionary, and k

the number of iterations/sparsity level.
Output: X, the image estimate, S, the support of the

reconstruction, {d1k}Kk=1, {d2k}Kk=1 the vectors
of first and second closest atom indices, and
{tk}Kk=1, the vector containing the path
parameter values.

1 begin
2 R1 ← T;
3 S = [];
4 k ← 1;
5 while k ≤ K do
6 D1 ← argmax

D∈D
|〈D,T〉|;

7 d1k ← index(D1);
8 D2 ← arg max

D∈D\D1

|〈D,T〉|;

9 d2k ← index(D2);
10 D2 ← sgn(〈D1, T 〉)sgn(〈D2, T 〉)D2;
11 tk ← arg min

t∈[0,1]
θt;

12 D∗ ← path(D1,D2, tn);
13 S← augment(S,D∗);
14 PS ← S(S>S)−1S>;
15 X← PST;
16 Rk+1 ← (I−PS)T;
17 k ← k + 1 ;
18 end
19 end

IV. DATA AND EXPERIMENTAL DESIGN

The data consist of 10 images (with varying lighting con-
ditions and facial expressions and orientations) of 40 subjects
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Fig. 2. Examples from the Eigen-dictionary built from 300 randomly chosen
faces. Top row contains the first 10 eigen-faces (global facial structures)
while the bottom row contains the 40 − 50th eigen-faces (finer scale/local
structures).

D1 D2

D1 D2T

Fig. 3. The top set of images are discrete samples along the OT path between
atoms D1 and D2. In the bottom plot we see the angle between samples along
the two paths and the test image labeled T.

for a total of 400 images [2]. We generate an eigen-face (EF)
dictionary by randomly selecting 300 images and performing
principal component analysis to get a dictionary of size 300.
The remaining 100 images will be designated as the testing
set. Although there may be an example of a subject’s face
in both the training and testing sets, all results presented are
based on reconstruction of images not used in the generation
of the eigen-dictionary. As a further challenge, all 10 images
of one subject were placed in the test set.

Beginning in the late 1980s the use of EFs for tasks
in facial recognition, detection, and reconstruction became
widespread. The canonical paper on the use of EFs for image
reconstruction is [30] to which we refer interested readers
for details on construction of eigen-dictionaries. A dictionary
comprised of EFs captures both global and local features. The
first (dominant) EFs correspond to global structures while later
EFs represent finer-scale structures. Thus, such a dictionary
is appropriate for an application of OMP since the residuals
being fit in consecutive iterations can be thought of as fitting
finer-scale structures which may be appropriately represented
by the dictionary. Although EFs are not state-of-the-art the
authors believe them to be a sufficient proof of concept.
Examples of the EF dictionary atoms are shown in Fig. 2.

A novel face from the testing set is approximated as a
linear combination of dictionary atoms. The terms “EF” and
“dictionary atom” will be used interchangeably when referring
to the facial image reconstruction challenge. Performance is

measured by the relative error of the signal estimate corre-
sponding to a fixed sparsity level. All of the path-based results
shown were generated by comparing the image being fit to 20
discrete samples along a given path (linear or OT). Examples
of samples along a path between two dictionary elements can
be seen in Fig. 3 as well as the angles between the test image
(residual fit on the first iteration) along the two paths.

For each test image four MP variations are performed and
the relative error is computed at each iteration/sparsity level.
The four variations implemented are OMP, Generalized OMP
(GOMP) [33] with two atoms amended to the support at each
iteration, L-POMP, and OT-POMP. The choice to compare to
GOMP with two atoms is due to it being the most conceptually
similar existing OMP variant to the proposed method.

V. RESULTS

Evaluation of the performance of the four variations of MP
(OMP, GOMP, L-POMP, OT-POMP) is measured in terms of
the reconstruction error for the k−sparse approximation, i.e.
||Rk||F . In Fig. 4 we see the relative error as a function of the
first 100 iterations of the OMP variants averaged over 100 test
images. The performance of the path-based approaches show
dramatic improvement over both OMP and GOMP. For several
iterations L-POMP achieves lower reconstruction error than
OT-POMP but the distinction is negligible when compared to
the performance differential relative to standard OMP. Note
that it can take OMP 2-3 times as many iterations to achieve
the same error as L-POMP or OT-POMP.

The face data set analyzed is noise-free and all of the
faces are well-registered on a naturally occurring coordinate
system. In the absence of these ideal circumstances, it is likely
that the difference in performance between L-POMP and OT-
POMP will diverge. As an example we look to the experiment
presented in Fig. 1. The test image in this setting is a single
large Gaussian being compared to two other images consisting
of either one or two different Gaussians. Included in the figure
are samples along the OT and linear paths between the two
atoms. For the linear path the intensity of the Gaussians in
the upper left corner and bottom right merely fade in and
out as t increases, the intensity support remains unchanged.
Alternatively, on the OT path intensity support moves from
the upper-left corner through the center of the image to the
bottom right. Angles formed between the path images and the
test image are also shown. A nontrivial minimum is found
along the OT path but not along the linear path. These results
are suggestive that in compression or reconstruction problems
where there is no inherited coordinate system (such as one
might find with a learned dictionary generated by k-SVD) OT-
POMP could greatly improve the quality of reconstruction.

VI. DISCUSSION

POMP reconstructs facial images with lower relative errors
than both the OMP and GOMP on the considered data
set. When averaged over 100 trials there is as much as a
2-3 fold reduction in the number of iterations needed to
obtain the same relative error using a path-based method.
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Fig. 4. The relative reconstruction error as a function of iterations for the
four algorithms considered. Results over 100 iterations are shown.

The two versions of POMP do not demonstrate significant
performance differences relative to one another in the facial
reconstruction task for low sparsity levels. However, the
similarity in performance between L-POMP and OT-POMP
may be specific to the data set as a toy example indicates
that there can be substantial differences between the two
approaches.

Application of POMP to image denoising and patch-
based reconstructions will allow for a more comprehensive
comparison to existing MP-based algorithms. Additionally,
we intend to explore path-based searches as an alternative to
domain adaptation and dictionary augmentation algorithms.
Furthermore, we intend to perform a detailed computational
complexity analysis of POMP so that the gains of
implementation may be appropriately qualified.

We plan to develop theory for when novel minimums along
the path exist. Necessary and/or sufficient conditions under
which there exist closed-form solutions for determination of
both the optimal path parameter value and its corresponding
atom are underway and may lead to reduced computational
expense. Future work will also include extensions of the
path-based approach for tasks in compressed sensing.
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