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Abstract—The amount of time an infant cries in a day helps the
medical staff in the evaluation of his/her health conditions. Ex-
tracting this information requires a cry detection algorithm able
to operate in environments with challenging acoustic conditions,
since multiple noise sources, such as interferent cries, medical
equipments, and persons may be present. This paper proposes
an algorithm for detecting infant cries in such environments. The
proposed solution is a multiple stage detection algorithm: the first
stage is composed of an eight-channel filter-and-sum beamformer,
followed by an Optimally Modified Log-Spectral Amplitude
estimator (OMLSA) post-filter for reducing the effect of inter-
ferences. The second stage is the Deep Neural Network (DNN)
based cry detector, having audio Log-Mel features as inputs. A
synthetic dataset mimicking a real neonatal hospital scenario
has been created for training the network and evaluating the
performance. Additionally, a dataset containing cries acquired
in a real neonatology department has been used for assessing
the performance in a real scenario. The algorithm has been
compared to a popular approach for voice activity detection based
on Long-Term Spectral Divergence, and the results show that the
proposed solution achieves superior detection performance both
on synthetic data and on real data.

I. INTRODUCTION

Acoustic analysis of infant cries has been devoted particular
attention in the last years, since it offers a non-invasive and
cost-effective method for monitoring the health conditions of
a newborn. Indeed, cry signals contain valuable information
related to the state of an infant [1]. Cry detection (or seg-
mentation), consists in identifying the portions of the audio
signals where a cry is present [2]–[4]. Further analysis can
evaluate whether an infant is affected by a pathology or not,
i.e., a binary classification problem whose two classes are
“healthy” and “non-healthy”, the latter class representing a
specific pathology or not [5]. An even more advanced cry
analysis, i.e., a multiclass classification problem, can detect
either the infant’s pathology [6], [7], or the cause of a cry
(e.g., hunger, pain) [8], [9].

This paper focuses on cry detection, a fundamental part
of any cry analysis system. Several works in the literature
addressed this task [10], [11], and more recently machine
learning methods have been proposed [2]–[4]. Among them,
Cohen and Lavner [12] proposed an algorithm based on k-
nearest neighbors to classify each frame as cry or non-cry for
alerting parents when infants are being left alone in closed
apartments or vehicles. Several acoustic features have been
used, such as the fundamental frequency, mel-frequency cep-
stral coefficients (MFCCs) [13], among others. The evaluation

corpus is synthetic, and it considers street noises. In [4], Abou-
Abbas et al. presented a method based on MFCCs and hidden
Markov models (HMMs). In a later work [2], they introduced
a signal decomposition stage and extracted the related features.
In both papers, the corpus included cries acquired in real en-
vironments and different acoustic conditions. In [3], Naithani
et al. also used MFCCs and HMMs, but they augmented them
with fundamental frequency and aperiodicity. In their case,
also, the experimentation dataset contained cries recorded in a
real environment, in presence of noise. Conversely, in [14] the
extraction of Log-Mel features and the detection of cry sounds
is achieved by using a deep neural network (DNN) composed
of three convolutional layers and one fully-connected layer.
The evaluation dataset contained cries recorded in a domestic
environment. Torres et al. [15] modified the neural network
topology of [14] by introducing dropout and batch normaliza-
tion. The experiments were conducted on a synthetic dataset
containing cries collected from free on-line resources.

In the examined literature, the algorithm robustness against
noise or reverberation is not explicitly addressed, thus de-
tection issues may arise when used in maternity wards or
Neonatal Intensive Care Units (NICUs). In this paper, we
propose a cry detection algorithm based on DNN able to
operate in realistic acoustic environments for identifying the
portions of the audio signals where a cry is present. The
robustness of the detection algorithm against noise is increased
by acquiring cry signals with an eight-channel circular array,
and by pre-processing them with a linear-constraint minimum-
variance (LCMV) beamformer [16] followed by the optimally
modified log-spectral amplitude (OMLSA) post-filter [16]. The
DNN-based cry detector operates on Log-Mel features and
is composed of 3 convolutional layers followed by 1 fully
connected layer. The experiments have been conducted on a
“Simulated” dataset and on a “Real” dataset. The first has been
created by generating the impulse responses of a real NICU,
and by synthetically adding several kinds of noises at different
Signal to Noise Ratios (SNRs) to clean cry recordings. The
“Real” dataset contains recordings acquired in a NICU by
using a circular microphone array positioned above the target
crib. By training the DNN on the Simulated dataset only,
we demonstrate that the proposed approach is effective in
real scenarios and it does not require a large amount of
data to be acquired in sensible environments such as NICUs.
This strategy can be considered as an extreme data augmen-
tation technique, since a model of the target environment
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is created and the related synthetic data are generated and
used for training. This approach has been compared to the
voice-activity detector described in [17]. The results show
that in both datasets the proposed approach outperforms the
comparative algorithm. Compared to the recent works on
infant cry detection, the contributions of this paper are: the
introduction of a signal enhancement stage for pre-processing
the acoustic signals, the use of a DNN-based classifier, data
augmentation to ease the data requirements for cry detection
in real conditions, and the evaluation on a Simulated dataset
in controlled conditions and on a Real dataset in a realistic
scenario.

The outline of the paper is the following. Section II de-
scribes in details the beamformer, the post filter, and the
neural network cry detector. The comparative method is briefly
introduced in Section III, whereas Section IV presents the
experiments performed to evaluate the proposed approach, and
the obtained results. Finally, Section V concludes the paper.

II. THE PROPOSED APPROACH

A block-scheme of the proposed approach is shown in
Fig. 1. Acoustic signals are acquired with an eight-channel
circular microphone array and processed by a filter-and-sum
beamformer for reducing coherent noise source, followed by
the OMLSA post-filter that reduces residual diffuse noise. The
feature extraction stage calculates the Log-Mel spectrogram,
whereas the DNN takes in multiple frames and classifies the
central one as a cry frame or not, exploiting the information
from temporally adjacent frames. The details of the signal
enhancement stage and of the DNN-based classifier follows.

A. Signal Enhancement

1) Beamformer: Cry signals are acquired by using an eight-
channel circular microphone array. This allows to apply a
beamforming algorithm for reducing the effect of coherent
noise sources. The beamformer used in this work is the linearly
constrained minimum-variance (LCMV) algorithm [16].

Denoting with s(t) the desired source, with am(t) the room
impulse response between the m-th microphone and s(t), and
with nm(t) the noise term related to microphone m, the signal
acquired by the m-th microphone is given by:

zm(t) = am(t) ∗ s(t) + nm(t). (1)

Analyzing the signals with the short-time Fourier transform
(STFT), Eq. (1) can be expressed in vector form as:

Z(k, l) = A(k)S(k, l) +N(k, l), (2)

Beamformer

8 channels
stream

OMLSA

Log-Mel
extraction

Neural 
Network

Uniform
Circular Array

Cry/Not-Cry

Fig. 1. Block-scheme of the proposed approach.

where l is the frame index and k is the frequency bin index.
Beamforming consists in filtering the signal acquired by each
microphone with the filter W ∗m(k, l), m = 1, . . . ,M , and sum-
ming the outputs. The vector formulation of the beamforming
operation is:

Y (k, l) = WH(k, l)Z(k, l). (3)

Filters coefficients WH(k, l) are obtained by minimizing
the output power E{Y (k, l)Y ∗(k, l)}, and constraining the
signal component of Y (k, l) to be equal to S(k, l). It can be
demonstrated [16] that the steepest descent formulation of the
adaptive solution is given by the following expression:

W(k, l+1) = P (k)[W(k, l)−µZ(k, l)Y ∗(k, l)]+F(k), (4)

where P (k) = I − A(k)AH(k)/||A(k)||2 and F(k) =
A(k)/||A(k)||2.

2) Post-filter: The output of the beamformer is further
processed by a post-filter algorithm in order to reduce the
residual diffuse noise. The post-filter used in this work is the
OMLSA algorithm [16], that operates by applying an adaptive
gain function G(k, l) to the output of the beamformer:

|Ŷ (k, l)|2 = G(k, l)|Y (k, l)|2, (5)

where

G(k, l) =
ξ(k, l)

1 + ξ(k, l)
exp

(
1

2

∫ ∞
ν(k,l)

e−t

t
dt

)
, (6)

ξ(k, l) =
σ2
x(k, l)

σ2
n(k, l)

, γ(k, l) =
|Y (k, l)|2

σ2
n(k, l)

, (7)

and ν(k, l) = γ(k, l)ξ(k, l)/(1 + ξ(k, l)). The noise variance
σ2
n(k, l) is estimated using the improved minima controlled

recursive averaging (IMCRA) [16]. In OMLSA, the optimal
spectral gain function is obtained as a weighted geometric
mean of the hypothetical gains associated with the speech
presence uncertainty. The modified gain function takes the
following form:

G(k, l) = [GH1
(k, l)]p(k,l)G

1−p(k,l)
min , (8)

where GH1(k, l) is the same as Eq. (6), p(k, l) is the speech
presence probabilty (SPP) and Gmin is a lower threshold [16].
The speech presence probability is computed as

p(k, l) =

{
1 +

q(k, l)

1− q(k, l)
(1 + ξ(k, l))e−v(k,l)

}−1
, (9)

where q(k, l) is the a priori speech absence probability esti-
mated using a soft-decision approach [16].

B. Feature Extraction

Log-Mel coefficients are widely used acoustic features in
audio analysis with Convolutional Neural Networks, since
they allow a compact representation of the audio signals
while retaining discriminative information [18], [19]. Log-
Mels are obtained by dividing the signal in frames 20 ms long
and overlapped by 10 ms. After calculating their Fast-Fourier
Transform, each frame is filtered with a filter-bank composed
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Fig. 2. The general neural network architecture used for cry detection.

of 40 triangular filters equally spaced in the mel-space. Log-
Mel coefficients are finally obtained by calculating the energy
in each band and applying the logarithm operator. The final
feature vector is thus composed of 40 coefficients.

As aforementioned, the classifier does not operate on indi-
vidual feature vectors, but it exploits the temporal information
contained in adjacent frames. The input of the neural network
is thus a (2N + 1) × 40 matrix, where N is the size of the
temporal context, i.e., the number of frames preceding and
following the frame being classified. In this paper, N has been
set to 49 frames, corresponding to about 0.5 s.

C. Neural Network

The neural network architecture used for cry detection
is shown in Fig. 2. The exact topology of the network is
determined in the experimental phase by using a validation
set (Section IV), however its general structure is defined as
follows: the first part of the network consists in one or more
convolutional layers, each followed by batch normalization
[20], rectifier linear unit (ReLU) activation function, dropout
and max-pooling operator. The output of convolutional layers
is processed by one or more fully connected layers, each
followed by batch normalization, ReLU activation function,
and dropout. The output layer is composed of a single neuron
with a sigmoid activation function. that outputs the probability
of the central frame of being a cry. Training of the network is
performed by minimizing the binary cross-entropy loss with
the Adam algorithm [20].

The hyperparameters related to the network topology that
are determined in the experimental phase are the number
of convolutional and fully connected-layers, the size and the
number of the kernels of convolutional layers, the size of the
max-pooling operator, the dropout rate, and the number of
units in the fully-connected layers.

III. COMPARATIVE METHOD

The proposed approach has been compared to a popular
algorithm commonly used for voice activity detection [17].
The algorithm will be denoted as “Ramı́rez” in the following
sections. Recalling the notation of Section II-A, the algo-
rithm operates by calculating the long-term spectral estimation
(LTSE) from the input signal as:

LTSE(k, l) = max{Y (k, l + j)}j=+6
j=−6, (10)

and the long-term spectral divergence (LTSD) as:

LTSD(l) = 10 log 10

(
1

NFFT

NFFT−1∑
k=0

LTSE2(k, l)

N2(l)

)
, (11)

6 m

23 m
4.4 m13 m 5.6 m

2.25 m

Target crib Microphone array Interferent cries SpeechBeep noise

Fig. 3. Plan of the NICU used to create the Simulated Dataset.

where N(l) is the noise spectrum magnitude and NFFT is the
number of FFT points. A frame is classified as cry if the value
of the LTSD exceeds a predefined threshold. The algorithm
includes a hangover scheme that delays cry/non-cry transitions
during 8 frames. Additionally, the noise spectrum magnitude
N(l) is updated if a non-cry is detected, thus improving the
robustness of the algorithm in noisy conditions.

IV. EXPERIMENTS

The proposed approach as well as the comparative method
have been evaluated on a Simulated dataset and on a Real
dataset containing data acquired in a NICU.

A. Simulated Dataset

The Simulated dataset has been created by considering the
scenario in Fig. 3, showing the plan of a NICU. The eight-
channel circular microphone array with radius 5.25 cm has
been positioned close to the crib shown in blue, and it has been
oriented towards the head of the infant as shown in Fig. 4a. The
impulse responses between the cry source and the microphones
have been created by using Pyroomacoustics1. A “clean” set
has been created by convolving 64 infant cry recordings at
16 kHz2 with the synthetic impulse responses. Each recording
contains the sound of a single subject, and it has been zero-
padded in order to be 30 s long. The cry/silence ratio in each
recording is about 50%, while the total duration of cry signals
is 16 minutes and 57 seconds, with 15 minutes and 1 second of
expiratory phases and 1 minutes and 56 seconds of inspiratory
phases. The total number of subjects is 29.

Additionally to the “clean” set, 240 “noisy” conditions
have been created by reproducing a realistic acoustic scenario.
Noisy conditions have been created by synthetically adding
four noises: human speech, infant cry, “beep” sounds, and
background noise. Human speech considers the presence of
other persons in the room, infant cry the presence of other
infants in the cribs nearby the target, and “beep” sounds con-
siders the noise produced by medical equipment. These noises
represent coherent sources positioned as shown in Fig. 3, and
they have been convolved with the related synthetic impulse
responses. As incoherent background noises, the sounds of a
fan and of an oxygen concentrator have been used. Noises
and clean data have been synthetically combined in order to

1https://github.com/LCAV/pyroomacoustics
2Sources: www.freesound.org and www.youtube.com
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(a) (b)

Fig. 4. Acquisition setup used for creating the Real dataset.

produce sets with SNRs equal to 0 dB, 5 dB, 10 dB, 15 dB, and
20 dB. For each coherent noise source and SNR, 12 acoustic
scenes have created, each differing for the position of the
source. Regarding the background noise, 12 acoustic scenes
have been created by using a different noise realization.

B. Real Dataset

The Real dataset has been acquired in the NICU of the
Salesi Children’s Hospital (Ancona, Italy). The plan of the
room and the crib disposition are the same of the Simulated
dataset shown in Fig. 3. Signals have been acquired at 16 kHz
by using the MATRIX Creator development board, equipped
with 8 digital MEMS microphones (model MP34DB02 by
STMicroelectronics) arranged in a uniform circular array with
radius 5.25 cm. The MATRIX Creator has been mounted in a
support that allows to direct it towards the desired position.
The model of the crib is Babytherm 8004/8010 by Draeger.
The dataset is composed of 10 sequences of 30 s of a single
subject, for a total duration of the cry signal equal to 122.95 s
(234 cry units). The average SNR is 0.09 dB±0.06 dB.

C. Experimental Procedure

The first phase of the evaluation procedure is finding the
values of the hyperparameters that provide the best perfor-
mance. This phase has been conducted on the clean data of
the Simulated dataset, with a 4-fold cross-validation and a
random search strategy [20]. As reported in Table I, among
the explored parameters we included the number of layers,
the number of kernels and their shape, as well as the dropout
rates. The parameters of the convolutional layers have been
constrained so that the number of kernels, and their shape
decreases with depth, while the dropout rate increases.

After this phase, the DNN-based cry detector and the
comparative method have been evaluated on the noisy and
enhanced signals of the Simulated dataset. The former have
been obtained by using one channel of the microphone array,
while the latter by processing the noisy sets with the signal
enhancement pipeline described in Section II-A.

Additionally, the proposed approach has been evaluated on
two training conditions, “clean” and “multicondition”. The
“clean” training set contains uncorrupted files described in
Section IV-A, while the “multicondition” training set contains
a combination of files with all the SNRs and all the noises

TABLE I
HYPERPARAMETERS EXPLORED IN THE RANDOM SEARCH. “U”: UNIFORM

DISTRIBUTION; logU UNIFORM DISTRIBUTION IN THE LOG-DOMAIN.

Parameter (Distribution) Range Final
Batch size (U ) {128, 256, 512} 256

Nr. of CNN layers (U ) [1, 3] 3
Nr. of fully-connected layers (U ) [1, 3] 1

CNN layers
Kernel shape (U ) [1, 10]× [1, 10] 10×10, 6×2, 3×2,

Kernel number (logU ) [8, 64] 32, 32, 32
Activation function (U ) {ReLu, Elu} ReLu, ReLu, ReLu

Strides (U ) {1, 2, 3} × {1, 2, 3} 1×1, 1×1, 1×1
Pooling (U ) {yes, no} yes, yes, no

Pooling Strides (U ) {1, 2, 3} × {1, 2, 3} 2×2, 2×2
Pooling Shape (U ) {1, 2, 3} × {1, 2, 3} 2×1, 2×2
Dropout Rate (U ) {0, 0.1, 0.2, 0.3} 0.1, 0.2, 0.3

Fully-connected layers
Units logU [128, 1024] 1024

Activation function: ReLu, Elu ReLu
Dropout Rate (U ) {0, 0.5} 0.5

TABLE II
COMPOSITION OF THE MULTICONDITION TRAINING SET.

SNR Beep Speech Interferent Cry Background Total
0 dB 2 4 4 4 14
5 dB 2 4 4 2 12

10 dB 6 4 2 2 14
15 dB 4 2 2 4 12
20 dB 2 2 4 4 12

processed by the signal enhancement pipeline (see Table II
for details). The neural network trained on clean data will
be indicated with “DNN-Clean”, while the one trained on
multicondition data with “DNN-Multi”. The performance on
the Real dataset has been obtained by using the same models
trained on the Simulated dataset.

The performance has been evaluated in terms of Average
Precision score (AP), a metric that summarizes the Precision
and Recall curve. AP score is calculated as AP =

∑
n(Rn −

Rn−1)Pn where Rn and Pn are respectively the Recall and
Precision for threshold n. Precision and Recall are calculated
as Rn = TPn/(TPn+FNn) and Pn = TPn/(TPn+FPn),
where TPn is the number of cry frames correctly detected,
FNn is the number of false negatives, and FPn is the number
of false positives.

D. Results on the Simulated Dataset

The network topology that provided the best performance
is composed of three convolutional layers and one fully-
connected layer (details are reported in Table I). On clean
data, this network achieves an AP score equal to 94.83%.

The results obtained on the Simulated dataset are shown in
Table III. Without the signal enhancement stage, the DNN-
based cry detector outperforms “Ramı́rez [17]” by 12.98%
despite it has been trained on clean data and the latter
includes a noise robust adaptive stage. The effectiveness of
the signal enhancement stage is evident by observing the
result reported in the lower part of Table III. The effect on
the proposed approach can be observed by comparing the
DNN-Clean results, where introducing the signal enhancement
stage improves the performance by 2.40%. Similarly for the
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TABLE III
RESULTS OBTAINED ON THE SIMULATED DATASET.

Without Signal Enhancement
Algorithm / SNR 0 dB 5 dB 10 dB 15 dB 20 dB Average

DNN-Clean 83.35 85.11 86.70 88.45 90.11 86.74
Ramı́rez [17] 71.39 72.03 73.00 74.95 77.46 73.76

With Signal Enhancement
DNN-Clean 86.86 88.19 89.25 90.29 91.09 89.14
DNN-Multi 91.63 92.58 93.18 93.52 93.71 92.92

Ramı́rez [17] 74.08 75.43 76.41 77.82 78.86 76.52

TABLE IV
RESULTS OBTAINED ON THE REAL DATASET.

DNN-Clean DNN-Multi Ramı́rez [17]
AP Score (%) 67.41 86.58 75.67

comparative method, the AUC improves by 2.76%. The overall
best result is obtained by using the multicondition training set
(DNN-multi), where the AP score exceeds 90%.

E. Results on the Real Dataset

The results on the Real dataset are shown in Table IV.
In this case, all the results have been obtained by using the
signal enhancement stage. Training the neural network on
clean data provides an AP score equal to 67.51%, while using
the multicondition training set improves the performance by
19.17%. Moreover, the DNN-Multi approach outperforms the
comparative method by 10.91%. It is worth reminding that
the DNN-Multi has been trained on multicondition data of the
Simulated dataset, thus demonstrating the good generalization
capabilities of the proposed method.

V. CONCLUSION

In this work, a neural network based approach for infant cry
detection has been proposed. It makes use of a Convolutional
Neural Network having as input Log-Mel features extracted
from the audio signals. Log-Mels are extracted from audio
pre-processed version of signals acquired in real acoustic
environments by using a circular Digital-MEMS microphone
array, mounted on the embedded system composed of the
commercial MATRIX Creator and Raspberry PI boards. The
pre-processing stage is characterized by a LVCM beamformer
and a speech enhancement algorithm (OMLSA). The neural
network has been trained by solely using a synthetic dataset
mimicking the acoustic condition of the hospital room in
which the cribs equipped with the audio system mentioned
above are located. This makes the proposed approach versatile
and easily applicable in different environmental contexts. The
Simulated dataset is made of 128 hours of audio, in which the
presence of different noise sources at diverse SNRs is simu-
lated. Obtained experimental results show that the proposed
algorithm is able to achieve an AP Score equal to 86.58%
in the Real dataset, superior with respect to the comparative
method [17] by 19.17%, thus allowing to positively conclude
about the effectiveness of the proposed approach.

Future works are targeted to enhance the DNN general-
ization capability by using different feature sets and other

regularization techniques. Moreover, suitable adaptation strate-
gies will be implemented to refine the DNN parameters by
exploiting specific in-domain audio streams. Finally, non-
acoustic cues coming from diverse infant activity monitoring
systems (e.g., video) will be fused with the available audio
signals to improve the overall classification performance.
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