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Abstract—Arbitrary sampling rate conversion (ASRC) of audio signals

currently receives a lot of new attention due to its potential for aligning

autonomous recording clients in ad-hoc acoustic sensor networks. State-

of-the-art for digital-to-digital ASRC has been outlined in terms of a two-
stage architecture comprising a) synchronous lowpass interpolation by an

integer factor and b) subsequent asynchronous polynomial interpolation.

While this composite ASRC achieves high resampling accuracy, its mere
disadvantage is the intermediate oversampling to high rate. In our paper

we thus fuse the high-rate discrete-time lowpass interpolation with a

polynomial Farrow filter into a monolithic FIR filter form. We then show

that decimation of the output rate effectively yields a polyphase set of
Farrow filters with quasi-fixed coefficients. Simulations with broadband

multitone signals confirm that the proposed low-rate monolithic ASRC

achieves the same performance as the conventional composite resampling
in terms of signal-to-interpolation-noise ratio. The main practical benefit

of quasi-fixed coefficients of the system stands out when resampling by

a small factor is desired, i.e., when the input rate almost matches the

output rate – a scenario to be encountered in acoustic sensor networks.

Index Terms—Asynchronous sampling rate conversion, sampling and

interpolation, synchronization of ad-hoc acoustic sensor networks

I. INTRODUCTION

A digital sampling rate conversion with rational conversion factors,

as shown by many textbooks [1]–[5], cannot be utilized for signal

alignment in ad-hoc sensor networks, where the autonomous clocks

of different nodes generally cause arbitrary and even slowly time-

varying sampling rate offset (SRO) between the observed signals [6]–

[8]. In such scenarios, an arbitrary sampling rate conversion (ASRC)

[3]–[5], [9] has to be used for SRO compensation. A wide-spread

architecture of digital-to-digital ASRC is depicted in Fig. 1 for cor-

rection of a certain SRO [9]–[11]. This conventional ASRC structure1

involves two stages: a) synchronous L-fold discrete-time upsampling

with lowpass filtering and b) asynchronous polynomial interpolation

of low order. The first stage can be implemented efficiently by a

polyphase filter structure, but still requires a commutator switch that

effectively invokes time-varying filter sets. The time-variability of

the polynomial interpolator can be resolved by a Farrow structure

(see Sec. II for references), but the processing still takes place in the

oversampled domain.

Only few attempts were made to overcome those inconveniences

by more efficient ASRC structures with both stages fused into a

monolithic architecture. In [12]–[14], it was shown that the composite

design can be framed as a generalized Farrow structure, where

round-robin (commutator) activation of a number of precomputed

conventional Farrow filter sets take place. Farrow’s original time-

invariant architecture [15] here is effectively seen as a special case

of the time-varying generalized Farrow structure. Another work [16]

comprehensively addresses optimization of the combined interpo-

lation filter coefficients in order to achieve advanced resampling

1Details about deriving the parameters µn, νn and ∆n for controlling the
resampling process according to a given SRO ε are provided in the appendix
in Sec. VI, while the task of obtaining the SRO from asynchronous signals
or other sources of information is not in the scope of this paper.
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Fig. 1. Conventional composite (i.e., two-stage) ASRC based on SRO ε=
fx/fy−1, integer delay µn, intersample index νn, and fractional delay ∆n.

performance. The authors of these publications did, however, not

draw an important conclusion of the monolithic architecture in Farrow

form that we wish to convey in this contribution2.

We specifically look into the case where just small yet arbitrary

resampling is required between the nodes in a sensor network with

otherwise almost the same nominal sampling frequency [6]–[8], [17]–

[20]. Hence, we require another rate decimation at the output of

the time-varying Farrow structure to compensate for the intermediate

expansion in the first stage. We then show that this rate decimation

cancels with the polyphase commutator of the time-varying Farrow

structure, unless the intersample fractional-delay time interval of the

polynomial interpolation stage lapses. Our configuration therefore

implies a return to almost the original and desirable time-invariant

Farrow structure, while flexibility and performance of the composite

architecture persist. Apart from a proof of performance, we quanti-

tatively express the seldom change of our quasi-fixed filter sets as a

function of the SRO addressed by the resampler.

This contribution is organized as follows: while the conventional

composite ASRC is described in Sec. II, the proposed efficient

monolithic ASRC with quasi-fixed filter coefficients is introduced

in Sec. III. An experimental validation of the monolithic ASRC is

presented in Sec. IV and conclusions are drawn in Sec. V. Sec. VI

eventually serves as an appendix to define and illustrate computation

of the control signals governed by the SRO.

II. CONVENTIONAL ASRC

In digital-to-digital ASRC, FIR filters are generally preferred for

interpolation because of their stability and exact linear phase [1], [9],

[21]. Furthermore, a lowpass FIR filter of length Ns for synchronous

L-fold upsampling, denoted by g(s)(mTx

L
) with input sampling time

Tx and oversampling-time index m, can be efficiently implemented

via a polyphase decomposition resulting in a set of L corresponding

polyphase FIR filters g
(s)
ℓ (kTx) of length Ns

L
for ℓ ∈ {0 . . . L− 1}

[1]–[5]. On the contrary, an efficient implementation of the asyn-

chronous interpolation, modelled usually by a continuous impulse

response g(a)(t), is more challenging. An outstanding overview of

the developments in interpolation theory is provided in [22].

2This work was supported by DFG research grant EN869/3-1 within the
framework of the Research Unit FOR2457 ”Acoustic Sensor Networks”.
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A. Conventional Farrow structure in the polyphase scheme

The state-of-the-art interpolators often make use of the well-known

Waring-Lagrange coefficients [22]–[24], which can be calculated via

explicit polynomials. A further distinctive feature of this interpolator

particularly contributing to its tremendous popularity is its maximally

flat frequency response at zero-frequency [25]. Thus, [26] asserts

that the Waring-Lagrange filter is probably the easiest way to design

asynchronous interpolators. However, the Waring-Lagrange coeffi-

cients have to be recalculated at the audio sampling rate preventing

a computationally efficient implementation, which is of great signif-

icance from a practical point of view. Different attempts have been

made to improve the efficiency of the interpolation, not only in time

domain [27], but also in frequency domain [28]–[30]. Calculating

time-variant interpolator coefficients recursively as presented in [31]

is certainly another worthwhile approach. An inventive filter structure

for interpolation using Waring-Lagrange coefficients with flexible

polynomial order is proposed in [32] and extended to interpolation,

decimation and non-uniform sampling in [33].

However, the most famous efficient architecture of asynchronous

interpolation in the time domain makes use of a Farrow structure

consisting of only time-invariant fixed filter coefficients [15]. It is

highly attractive for real-time systems as it is fast and contains

only fixed coefficients [34] and may also be implemented using the

original Waring-Lagrange coefficients [35]. Since the development of

the original Farrow filter, many similar design techniques have been

proposed [36]–[39]. For the Farrow structure considered here, g(a)(t)
is defined piecewise by polynomials of order R− 1 in the fractional

delay ∆m ∈ [0, 1), resulting in R subfilters g
(a)
r (mTx

L
) of length

Na for r ∈ {0 . . . R − 1} with fixed coefficients. The conventional

ASRC with polyphase decomposition and subsequent conventional

Farrow structure is depicted in Fig. 2. After the polyphase lowpass

in the L-fold upsampled domain, the resulting signal v(mTx

L
) is

delayed by νm
Tx

L
with νm ∈ {0 . . . L− 1}, i.e., a subsample delay

w.r.t. the original sampling time interval Tx, before the Farrow filters

deliver individual outputs wr(m
Tx

L
). They are combined then with

time-varying fractional delay ∆m to the polynomial interpolation∑R−1
r=0 ∆r

m wr(m
Tx

L
). The L-fold decimator at the output of the

system implies that the input and the final output signal will have

almost the same sampling frequencies fx = 1/Tx and fy = 1/Ty ,

up to a small SRO ε = (fx/fy)− 1 as desired by the system.
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Fig. 2. Composite ASRC with polyphase decomposition and conventional

Farrow structure: lowpass filter decomposed into L polyphase branches g
(s)
ℓ

and Farrow structured interpolator consisting of R subfilters g
(a)
r .

B. Generalized Farrow structure in the over-sampling scheme

Since the pioneering work of Farrow with the conventional Far-

row structure [15], different types of Farrow structures have been

proposed [40]. Exploiting a symmetry of Farrow coefficients leads

to the modified Farrow structure resulting in further reduction of

computational complexity [34]. The generalized Farrow structure

(GFS) proposed in [12] combines the lowpass filter g(s)(mTx

L
) with

subfilters g
(a)
r (mTx

L
) of the conventional Farrow structure resulting

in a set of R combined filters gr(m
Tx

L
) of length N = Ns+Na−1

as shown in Fig. 3. Since subfilters gr(m
Tx

L
) operate on the high

intermediate sampling rate, an additional L-fold expander is required

at the ASRC input as shown also by the conventional oversampled

ASRC in Fig. 1. The subsample index νm ∈ {0 . . . L− 1} controls

R delays, which handle the integer synchronization on the expanded

signal (corresponding to choosing the correct samples in a stand-alone

asynchronous interpolation). The combined filters gr(m
Tx

L
) consist

only of fixed coefficients, hence, the system as well can be understood

as an original Farrow structure in the oversampled domain. While the

fixed coefficients can be designed offline before signal processing,

storing the filters gr(m
Tx

L
) requires more memory than storing the

coefficients of g(s)(mTx

L
) and g

(a)
r (mTx

L
) separately.

Within the signal processing community, some publications have

addressed the GFS. A GFS for low-order polynomial interpolators is

used in [13] and a polyphase implementation of the GFS is analyt-

ically derived in [14]. The authors of [41] argue that the GFS can

be utilized for implementation of both anti-imaging and anti-aliasing

lowpass filters, which is a very important feature. The generalized

modified Farrow structure proposed in [42] combines advantages of

both modified and generalized Farrow structures. An optimization

method based on the GFS taking into account both synchronous

and asynchronous stages of an ASRC system is developed in [16].

Further, an arbitrary sampling rate reduction can be accomplished

using the transposed Farrow structure from [43] implemented in

different ways [44]. The prolonged Farrow structure proposed in [45]

results from prolonging the length of the polynomial segments in the

Farrow structure. It should also be mentioned, that the prolonged

transposed modified Farrow structure [46] improves the pass-band

region of the transposed Farrow structure. Note that the subsequently

proposed monolithic ASRC architecture is directly associated with

the oversampled GFS as shown in Fig. 3.
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Fig. 3. ASRC in the generalized Farrow structure: lowpass filter g(s) com-

bined with subfilters of Farrow structure g
(a)
r via discrete-time convolution.
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III. LOW-RATE MONOLITHIC ASRC

The motivation for developing a monolithic implementation of

ASRC is strongly connected to a task at hand to align signals in an

ad-hoc sensor network with similar sampling rates. Typical absolute

SRO values in a wireless acoustic sensor networks could be in the

range of 0-50 ppm with typical values of 10-20 ppm [6]–[8]. The

proposed low-rate monolithic structure is developed in the following.

A. Generalized Farrow structure in the polyphase scheme

In a first step, we rearrange the components of the GFS shown

in Fig. 3 by applying the intersample index ν to the output rather

than the input of the combined filters gr(m
Tx

L
). This allows the

decomposition of every combined filter gr(m
Tx

L
) into L polyphase

filters gr,ℓ(kTx) of length N
L

. Consequently, the L-fold expander on

the input of the ASRC system is replaced by a commutating switch

similar to Fig. 2. Furthermore, as preparation for the next derivation

step, the final L-fold decimator in Fig. 3 is pulled into each Farrow

branch. The control signals are hence calculated on the time basis

of the low-rate output signal as νn and ∆n (cf. Sec. VI), rather

than in the upsampled domain. The resulting structure is depicted

in Fig. 4. Note that N needs to be an integer multiple of L, which

may be achieved via zero-padding. The advantage of this polyphase

decomposition is that the combined subfilters gr,ℓ(kTx) become short

and, even more important, work on the low input sampling rate.

However, the commutator connecting the polyphase combined filters

to the Farrow branch still operates on the high intermediate rate

similar to the conventional ASRC approach from Fig. 2.
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Fig. 4. Monolithic ASRC with polyphase decomposition: the commutating
switch operates at a high rate of L/Tx.

B. Efficient monolithic ASRC with quasi-fixed coefficients

The final step to the proposed efficient polyphase monolithic ASRC

architecture depicted in Fig. 5 is a streamlining of the signal handover

between the polyphase filters and the polynomial interpolation of the

ASRC system in Fig. 4. The commutator produces an intermediate

high-rate digital sequence that is to be delayed via νn. The subsequent

decimator then discards L − 1 out of L high-rate samples before

feeding the result into the polynomial interpolation. For constant in-

tersample index νn = ν, i.e., while the resampler effectively operates

on the same high-rate interpolation interval, the decimator always

keeps the ν-th sample from the high-rate stream, corresponding to

a distinct polyphase filter set g0,ν(kTx) . . . gR−1,ν(kTx). Hence,

x(k Tx) y(nTy)w0(nTy)

w1(nTy)

wR−1(nTy)

N/L

.

..

.

..

. . .

. . .

g0,0

g1,0

gR−1,0

g0,L−1

g1,L−1

gR−1,L−1

∆nνn
SRO ε

Tν

Fig. 5. Quasi-fixed monolithic ASRC: the commutator operates with a long
switching interval Tν , changing only when the fractional delay ∆n lapses.

commutator, delays, and decimator in Fig. 4 collapse into a single

commutator that switches only when νn changes. In applications with

small SRO, that commutator thus switches very slowly, so that the

filter coefficients can be viewed quasi-fixed. For an SRO ε defined as

fx = (1 + ε) · fy (1)

with fx = 1/Tx and fy = 1/Ty , the according switching interval

for the intersample index ν is

|Tν | =
1

|ε| fx L
. (2)

To give an example, the commutator then switches only once every

Tν ≈ 1.042 s, if a nominal sampling rate of 16 kHz and an absolute

SRO of 15 ppm are assumed with L = 4 polyphase components. For

such slowly changing intersample indexes, the coefficients used in the

ASRC are hence quasi-fixed. The proposed monolithic ASRC with

quasi-fixed filter coefficients is thus computationally relaxed and can

offer significant benefits in terms of implementation.

IV. EXPERIMENTAL EVALUATION

The proposed monolithic ASRC architecture is evaluated in ex-

periments with broadband discrete-multitone signals with a band-

width [0; fu] for upper cut-off frequencies fu = {2, 4, 7} kHz

sampled with a nominal sampling frequency of fy = 16 kHz and

an SRO of ǫ = 50 ppm. To compensate for the SRO we compare

the seven ASRC systems listed in Tab. I. The first method is an

ideal Hann-windowed sinc-interpolation with support of Nw = 513
samples. In the second approach, the temporally closest input sample

(nearest neighbour) is selected as the output without any interpolation.

Both of these systems serve as an upper and lower bound of

performance, respectively. All further systems rest upon polynomials

with R = 4. The third and fourth systems are fractional-delay based

ASRCs using the original Farrow filters [15] optimized for fractional

delays ∆m ∈ [0; 1) and normalized frequency range Ω ∈ [0; 7/8].
Both systems hence neglect the explicit lowpass support as of Fig. 1

and Fig. 2. System 3 operates with Na = 4 coefficients, while

best possible performance according to our experiments is achieved

with Na = 48 coefficients in system 4. The remaining three ASRC

systems in Tab. I are based on the support of both, a discrete-time

lowpass interpolation (L = 8) in the first stage and a Waring-

Lagrange interpolation (Na = R) in the second stage, while the

precise implementation is according to Fig. 2, Fig. 3 and Fig. 5,

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 482



TABLE I
PERFORMANCE AND PROPERTIES OF DIFFERENT ASRC SYSTEMS.
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1. Win-Sinc (Nw = 513) 107.5 107.3 107.3 X

2. Nearest neighbor 17.7 11.7 7.0 X

3. Farrow (Na = 4) 24.7 23.0 18.5 X X

4. Farrow (Na = 48) 88.1 64.0 45.1 X X

5. Composite (Fig. 2) 98.2 96.4 82.1 X

6. Generalized (Fig. 3) 98.2 96.4 82.1 X X

7. Low-rate (Fig. 5) 98.2 96.4 82.1 X X X

respectively. The lowpass filter is designed using the Parks-McClellan

method for Ns = 797 with a passband cutoff frequency fp = 7 kHz

and a stopband cutoff frequency fs = 8 kHz [47].

The performance of the ASRC systems is evaluated in terms

of signal-to-interpolation-noise ratio (SINR) listed in Tab. I. We

observe that the system performance naturally decays with increasing

bandwidth fu. Application of the lowpass filter in systems 5–7 causes

a performance gain of 10–37 dB compared to the landmark system 4.

The system 7 achieves the same performance as systems 5 and 6 in

terms of SINR, proving the equivalence of the proposed approach

with the conventional ASRC. The monolithic ASRC with quasi-fixed

coefficients is, however, set apart from systems 5 and 6 by the desired

low-rate processing in Tab. I. The proposed system thus combines

the low-rate processing of systems 1–4 with the lowpass filtering of

systems 5 and 6 while maintaining fixed coefficients.

To further demonstrate flexibility and performance of the proposed

monolithic ASRC for different values of parameters N = Ns+Na−1
and L, further experiments are carried out using multitone signals

with fu = 7 kHz. Waring-Lagrange coefficients for R = Na = 4
are still used for asynchronous interpolation. As shown in Fig. 6, the

system performance measured in terms of SINR steadily improves

with increasing length Ns of the lowpass filter until saturation

due to the limitation of polynomial interpolation. The resampling
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S
IN

R
/
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Fig. 6. Performance of low-rate monolithic ASRC from Fig. 5 with Waring-
Lagrange interpolation (R = Na = 4) and different lowpass parameters.

performance further increases here with the choice of the implicit

discrete-time lowpass upsampling factor L, where L = 1 effectively

corresponds to just Waring-Lagrange interpolation.

V. CONCLUSION

In this contribution, an efficient monolithic ASRC architecture has

been derived for aligning the discrete-time signals with almost the

same nominal sampling frequency – a scenario often encountered in

ad-hoc acoustic sensor networks. Retaining the same high resampling

performance as the conventional composite ASRC approach, the

proposed structure can be implemented as a monolithic filter structure

with quasi-fixed coefficients. For small SROs, the filter sets only

need to change seldom, making the proposed approach suitable for

future block-based frequency domain implementation. The proposed

structure does, however, not yet exploit the symmetry of the filter

coefficients, which can be addressed in further developments.

VI. APPENDIX

For an illustration of how the control signals in Fig. 1 µn ∈ Z,

νn ∈ {0, 1, . . . , L − 1} and ∆n ∈ [0; 1) are calculated for a given

SRO, for instance ε = 1
3

according to (1), the original sampling times

of signal x(k′ Tx) and the desired sampling times of signal y(nTy)
(cf. Fig. 1) are depicted in Fig. 7 as red circles and green crosses,

respectively. In this timing diagram, a perfect synchronization is

assumed in the beginning of the resampling process and the samples

added by the L-folded expander are depicted as blue empty circles.

t

0

0

0

Tx 2Tx 3Tx 4Tx 5Tx 6Tx 7Tx 8Tx

Ty 2 Ty 3 Ty 4 Ty 5 Ty 6 Ty

k′

n

1

1

2

2

3

3

4

4

5

5 6

6 7 8

δ0 = 0 δ1 δ2 δ3 δ4 δ5 δ6 . . .

Fig. 7. Timing diagram for ε =
1
3

and L = 2.

The sampling times of y(nTy) counted with n ∈ Z correspond

to the real-valued sampling times κn = n + δn ∈ R on the k′-axis

with an accumulating time drift δn = ε · n. Thus, the values of µn,

νn and ∆n are calculated from δn as follows:

µn = ⌊δn⌋, νn = ⌊L · {δn}⌋, ∆n = {L · {δn}}, (3)

where ⌊·⌋ and {·} are the common floor and fractional part functions,

respectively. The values µn, νn, and ∆n for the example in Fig. 7 are

calculated with (3) and given in Tab. II to complete the illustration.

TABLE II
THE VALUES OF µn , νn AND ∆n FROM FIG. 7 CALCULATED WITH (3).

n κn δn µn νn ∆n

1 1
1
3

1
3

0 0
2
3

2 2
2
3

2
3

0 1
1
3

3 4 1 1 0 0

4 5
1
3

1
1
3

1 0
2
3

5 6
2
3

1
2
3

1 1
1
3

6 8 2 2 0 0

Note, ∆n is calculated as fractional part of the time interval Tx/L.
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[26] T. I. Laakso, V. Valimäki, M. Karjalainen, and U. K. Laine, “Splitting
the unit delay,” IEEE Signal Processing Magazine, vol. 13, no. 1, pp.
30–60, Jan. 1996.

[27] G. Evangelista, “Design of digital systems for arbitrary sampling rate
conversion,” Signal Processing, vol. 83, no. 2, pp. 377–387, Feb. 2003.

[28] G. Bi and S. K. Mitra, “Sampling rate conversion in the frequency
domain,” IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 140–
144, May 2011.

[29] S. Miyabe, N. Ono, and S. Makino, “Blind compensation of interchannel
sampling frequency mismatch for ad hoc microphone array based on
maximum likelihood estimation,” Signal Processing, Elsevier, vol. 107,
pp. 185 – 196, Sept. 2015.

[30] J. Schmalenstroeer and R. Haeb-Umbach, “Efficient sampling rate offset
compensation - an Overlap-Save based approach,” in Proc. of European

Signal Processing Conference (EUSIPCO), Sept. 2018.
[31] A. I. Russell and P. E. Beckmann, “Efficient arbitrary sampling rate

conversion with recursive calculation of coefficients,” IEEE Transactions

on Signal Processing, vol. 50, no. 4, pp. 854–865, Apr. 2002.
[32] C. Candan, “An Efficient Filtering Structure for Lagrange Interpolation,”

IEEE Signal Processing Letters, vol. 14, no. 1, pp. 17–19, Jan. 2007.
[33] V. Lehtinen and M. Renfors, “Structures for interpolation, decimation,

and nonuniform sampling based on Newton’s interpolation formula,” in
International Conference on Sampling Theory and Applications, May
2009.

[34] J. Vesma and T. Saramaki, “Interpolation filters with arbitrary frequency
response for all-digital receivers,” in Proc. of IEEE International

Symposium on Circuits and Systems, May 1996, vol. 2, pp. 568–571.
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