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Abstract—Technologies for contactless Heart Rate measure-
ment support the progress in the diagnostic and healthcare fields,
opening new possibilities even for everyday use at home. Among
them, Videoplethysmography based on the Eulerian Video Mag-
nification method has been already validated as an effective
alternative to traditional, but often bulky, Electrocardiographic
acquisitions. In this paper we study the influence of different
measurement parameters on the Heart Rate estimation, in order
to assess the reliability of the Videoplethysmography detection
method under varying conditions, like different dimensions
and positions of the processed regions of interest, pyramidal
decomposition levels, and light conditions.

I. INTRODUCTION

The possibility to unobtrusively measure biomedical param-
eters may be of great importance in healthcare, as it can
enable diagnosis and follow-up of different medical issues
in very severe conditions, like those of burned patients, or
when newborns in incubators are to be monitored. Among the
parameters that can be contactlessly detected, the Heart Rate
(HR) is of interest, as the number of times the heart beats
per minute may be affected by disease, the level of activity
or stress, and by the subject’s age. The HR of a subject may
change along time depending on the natural aging process, but
variations may indicate also possible risky conditions making
the heart more susceptible to failure [1].

The gold standard method for heartbeat detection adopts an
Electrocardiograph (ECG), an expensive and non comfortable
medical device, the use of which is typically limited to clinical
premises [2], [3]. Commercial certified ECGs are available too,
that provide both HR estimation and blood pressure values.
Nowadays, wearable devices like smart watches or wrist bands
claim to provide a number of parameters, among which the
HR value too, but reliability and accuracy of HR estimation
may vary across different brands and platforms [4]. In all the
above mentioned cases, the technology used for HR detection
requires a direct contact of the device and the human body,
in order to extract the voltage or the Photoplethysmographic
(PPG) signal [5] to process.

PPG-based methods for HR detection exploit light signals
and two possible modalities, i.e. reflection or transmission.
The PPG signal is obtained from the spectra of light reflected
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from (or transmitted through) body tissues, once the skin
is illuminated by a LED and the amount of light reflected
(or transmitted through) is measured. Medical devices based
on PPG technology, such as pulse oximeters [6], are widely
used in different healthcare applications. PPG has been also
proposed for the analysis of Heart Rate Variability (HRV) [7],
[8] as an alternative to ECG, even if the method may be less
accurate, due to the difficult detection of peaks in the measured
signal. Solutions to measure the HR without body contact
offer technological and scientific progress in the diagnostic and
healthcare fields, opening new possibilities even for everyday
use at home, thanks to a simplified HR acquisition procedure.
As a consequence, we are interested on the evaluation of the
HR detection performed by video processing, which requires
collecting a Videoplethysmographic (VPG) signal [9] of the
subject to monitor, through a contactless procedure. As a
matter of fact, the blood flowing in the tissues varies according
to the subject’s HR, and causes, among others, extremely
small variations of the skin color, that are not normally
perceptible to the human eye. However, through proper VPG
signal processing techniques, based on the Eulerian Video
Magnification (EVM) algorithm [10], it is possible to process
the Luminance (Y) component of the captured VPG and
obtain, as an indirect measurement, the HR value. Several
processing steps have to be applied on the Y component of the
captured video frames, in order to extract the VPG signal. At
each step, different parameters are set, and they may influence
the final HR detection.

Following a previous work of the same authors [11], in
which the VPG-based contactless HR estimation was validated
against the gold-standard measurement procedure using a
Holter device, in this paper we study the influence of different
measurement parameter configurations on the HR estimation,
in order to assess the reliability of the detection method. Using
the same dataset of video sequences acquired through the RGB
camera of a Kinect device [11], several configurations of the
measurement parameters are considered, and the effects of
light variations are analyzed too.

The paper is organized as follows: in Section II a summary
of the processing steps leading from the acquired video

772



2018 26th European Signal Processing Conference (EUSIPCO)

RGB color
frames
acquisition

ROI
selection
J'1
\\//
RGB to NTSC
conversion
g

[\ De::::ccteion [ EVM [:

g

Butterworth band- | VPG extraction
[ FFT }\j[ pass filtering } :][ from Y component }

Il

A 2

HR
(bpm)

Fig. 1. Main scheme of the proposed system for the computation of the
subject’s HR from RGB video.

RGB frames to the VPG signal is provided, focusing on the
parameters that will be involved in the assessment of the
HR detection method. In Section III, the effects of different
parameter values selection on the HR detection are presented
through experimental evaluation, and a thorough discussion of
the results is provided in Section IV. Finally, Section V draws
the main conclusion of this work.

II. HR EXTRACTION FROM VIDEO PROCESSING

Video processing for HR extraction takes as input RGB
frames of a human face. The area related to the human face
is detected and processed by the EVM algorithm [10], which
enhances the small changes in RGB levels due to blood flow.
Then, limited areas of the face and neck are selected through a
Region Of Interest (ROI) extraction step. Following an RGB-
to-YIQ color space conversion, the main frequency component
of the Luminance (Y) signal within the ROI is computed
through the Fast Fourier Transform (FFT), and the HR value
is the output of the system. A schematic view of the method
is given in Fig. 1, where the different steps can be identified.

A. VPG processing steps and parameters

After the RGB video capture, that takes place at a maximum
frame rate of 30 fps for a total time of 40 s at each acquisition,
the well-know Viola-Jones algorithm [12] is applied for face
detection. This way, the relevant area of the frame, i.e. the
one that includes face and neck, is selected and tracked along
subsequent frames by the Kanade-Lucas-Tomasi (KLT) algo-
rithm [13], [14]. Following this procedure, only the relevant
parts of the original RGB frames are selected, thus reducing
the computational burden of the following EVM operations.

The EVM method used to magnify the skin color changes
due to the heart beats requires the proper configuration of some
parameters, namely:

« the color amplification level, denoted as «;

o the Gaussian piramidal decomposition level, denoted as

L, and

o the frequency bandwidth of the ideal band-pass filter,

defined by f;, and fp.

According to the EVM method, in order to extract the HR
value from the VPG signal, each RGB frame is converted
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Fig. 2. ROIs identification according to [11] (face details removed for privacy
reasons): a is ROIy, by and by are ROI., and ¢ is ROI,.

to the YIQ color space, and the Y component is selected for
further processing, consisting in: a filtering operation by a third
order Butterworth filter featuring the same cut-off frequencies
of the ideal band-pass filter used in the EVM, and an FFT
stage on the filtered Y component. Finally, the subject’s HR
in bpm (beats per minute) is obtained by extracting the peak
frequency component and multiplying it by a factor of 60. In
our previous work [11], the above mentioned parameters were
set heuristically to the following values:

e a = 100, to have a good compromise between signal
amplification and the presence of artifacts;

o L = 6;

e fL =50/60 Hz and fy = 174/60 Hz.
Additionally, based on empirical outcomes, the minimum size
of the frame area to perform the face detection process was set
to 280 x 280 pixels, and the forehead, cheeks, and neck ROIs
(denoted as ROI;, ROI., and ROI,) were chosen equal to
90 x 30, 40 x 30, and 28 x 26 pixels, respectively. A pictorial
representation of the ROIs is shown in Fig. 2.

B. Experimental data acquisition

The RGB frames processed by the EVM method are ac-
quired through a Microsoft Kinect v2 sensor: they are stored
as bitmap images, with a resolution of 1920x 1080 pixels at
30 fps frame rate, using the software tool developed by the
authors [15]. A number of 20 young subjects (10 males and
10 females) participated to the validation tests (age: (22.50
+ 1.57) yrs; height: (173 £ 10) cm; weight: (62.80 £ 9.52)
kg), and for each subject five video sequences were acquired,
generating a total number of 100 sequences. For practical
reasons, subjects were facing the Kinect while sitting on a
chair at a distance of about one meter, as shown in Fig. 3.
This accounts for the fact that the horizontal field of view of
the device is (70+5)° and the vertical field of view is (60+£5)°.
The acquisition time length has been set to 40 s.

III. VARIATION OF MEASUREMENT PARAMETERS

As extensively discussed in [11], the performance of the
proposed contactless and VPG-based HR detection method
are comparable to those obtainable from the gold standard
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Fig. 3. The experimental data acquisition setup [11].

Holter device. However, as there are many parameters involved
in the different processing steps, it is important to check
the robustness of the HR estimation with respect to possible
(controlled or uncontrolled) variations of those parameters. To
this aim, in this Section we investigate how the estimated HR
values may vary, due to different dimensions of the selected
ROIs, possible displacement of the selected ROI with respect
to its ideal position, and variations of the environmental light
conditions.

A. Variation of the ROI dimensions

In a first series of tests, the dimensions (in pixels) of the
different ROIs are reduced, and the error in the estimated HR
with respect to the HR computed over the original ROIs in
[11], is evaluated. Let us define the total original ROI (ROIr)
as the sum of the areas of all the original ROIs involved:
ROIr = ROIf + 2 - ROI. + ROI,. ROIs with reduced
dimensions are identified by a superscript, according to Table
I. In Experiment 1, the ROI} amounts to 38.7% of ROIr,
whereas in Experiment 2, the ROI% amounts to 44.5% of
ROI7p. It is important to outline that ROI dimensions have
to be chosen according to the area of the frame selected for
the face detector, which amounts to 280 x 280 pixels, out
of 1920 x 1080 pixels in a frame, in our case. So the ROI
dimensions are set proportionally to the face detector area.
On average, the distance of each ROI side from the parallel
face detector boundary has been increased by 10%, resulting
in the reduction of the ROI areas specified in Table I, and
illustrated by a sample in Fig. 4, compared to Fig. 2.

In order to quantify the HR estimation error due to the use
of reduced ROI dimensions, the following definition of relative

error is given:
€aq

" HRg,

where HR,,, denotes the average value of the collected
measurements, and ¢, is the absolute error.

Referring to the settings described in Table I, we obtained
6} = 6.55% in Experiment 1, and 63 = 6.52% in Experiment
2, respectively. Keeping the same configuration of the other

- 100 (1)

€r
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Fig. 4. Reduced ROI dimensions.

parameters used in [11] (&« = 100, L = 6, fr, = 50/60
Hz, and fg = 174/60 Hz), the relative error increases from
3.40% originally obtained through the unsupervised approach
(according to which no a priori knowledge about the subject’s

health status is available), to around 6.5% in both Experiment
1 and 2.

B. Variation of the Gaussian pyramidal decomposition level

In order to reduce the relative error resulting from the
reduction of the ROI dimensions, in a second series of tests we
consistently reduced the L parameter from the original value of
6 down to 4. In fact, the Gaussian pyramidal decomposition
implies a sub-sampling of the frame and a decrease in its
resolution; by limiting the decomposition level to L = 4 we
improve the trade-off between ROI dimension and decompo-
sition (i.e. resolution). In this case, by processing again all
the 100 VPG sequences collected, for the ROI dimensions
specified in section III-A, we obtained a minimum relative
error €& = 4.74%, thus denoting an improvement with respect
to Experiment 1 and 2.

C. Variation of the neck ROI position

An additional series of tests aimed at evaluating the effects
of ROIs displacement on the HR estimation. In Table 2 of
[11], it is shown how the use of the single ROI, in the
supervised mode (filter parameters are adjusted according
to the known condition of the subject, sporty or sedentary)
provides a good HR estimation, with €2 = 2.70%. In the
unsupervised mode, more interesting in the perspective of
a practical implementation of the method, ¢/ = 6.69%.
This result is quite reasonable, as the neck area includes the
carotid arteries, over which the EVM provides good outcomes.
However, placing the ROI,, on the left or right side of the
neck, may affect the result. In fact, the left carotid artery (right
side of the neck area in the video) originates directly from the
aorta, thus it is reasonable to expect a stronger VPG outcome,
whereas the right carotid artery (left side of the neck area in
the video) is the brachiocephalic one [16]. In order to test this
hypothesis and check the effect of the ROI,, displacement on
the HR estimation, the dimension of the ROI,, and the setting
of the EVM parameters were restored to the original values
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TABLE I

REDUCED DIMENSIONS OF THE ROIS USED IN EXPERIMENTS. "ORIGINAL” DENOTES THE SETTINGS USED IN [11]

Test forehead area cheek area neck area total area
Original || ROI; =90 x 30 = 2700 px | ROI. =40 x 30 = 1200 px | ROI, =28 x 26 = 728 px || ROIp = 5828 px
Exp. 1 ROI} =56 x 22 =1232 px | ROI} =22x 16 =352 px | ROI; =16 x 20 = 320 px || ROI} = 2256 px

A1% 45.6% 29.3% 43.9% 38.7%

Exp. 2 ROI7 =70 x 22 = 1540 px | ROI? =22 x 22 =484 px | ROI; =22 x 26 =572 px || ROI7 = 2596 px

A% 57% 40.3% 78.5% 44.5%

a)

Fig. 5. Neck ROI displacement in 3 steps: a) C, b) R - corresponding to
anatomic left side, and c¢) L - corresponding to anatomic right side.

TABLE 11
RELATIVE HR ESTIMATION ERROR (AVERAGE OVER 100 SEQUENCES)
ACCORDING TO RO1I,, LOCATION

R C L

U
Lt [ & [ & [ & |

T

| 6.40% | 14.01% | 18.09% || 6.69% |

of [11] (see also Table I in this paper), but three different
positions were considered: right (R - that corresponds to the
anatomic left side of the neck), center (C), and left (L -
anatomic right side), as shown in Fig. 5. By repeating the
experimental tests with the ROI,, located in the three different
positions, the results provided in Table II were obtained. A
slight improvement of the relative HR estimation error was
obtained on the right side location, i.e. the anatomic left side,
as expected, with €Z = 6.40%.

Additional tests were executed by reducing the ROI,
dimension to 22 x 26 pixels (ROI?2), and the pyramid de-
composition level accordingly (L = 4). Then, eigth different
positions were tested, moving the ROI?L from left, to center,
to right in the video frame, as shown in Fig. 6. This way,
in the two rightmost positions of the video, the relative
error was decreased, down to 5.51%, as detailed in Table III
(€3); however, the remaining positions did not provide any
improvement but, on the contrary, a relevant increase of the
relative HR estimation error.

D. Variation of the light conditions

As a final experiment, the effect of light variations in the
acquired video sequences was tested. To such an aim, an
artificial increase of the brightness factor (BF") was applied on
half of the frame area according to the histogram slide method
[17], with two different values: BF = 25 and BF = 50. In
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TABLE III
RELATIVE HR ESTIMATION ERROR (AVERAGED OVER 100 SEQUENCES)
ON EIGHT ROI2 LOCATIONS

ol 2 e o
17.65% | 13.91% | 1430% | 15.51%
e 8 el 15
14.80% | 13.59% | 593% | 5.51%

Fig. 6. Neck ROI displacement in 8 steps, from left side (anatomic right one)
to right side (anatomic left one).

Fig. 7 b) and c), an example of artificially illuminated video
frame is shown for BF' = 25 and BF = 50, respectively,
whereas Fig. 7 a) shows the original frame.

The impact of light variations was estimated by considering
either three different positions of the ROI, (L, C, and R)
as in section III-C, and the ROIr. The results obtained are
summarized in Table 1V, for BF' = 25 and BF = 50.

[X.Y): [207 297)
[R.G.BJ: [170 188 148]
" 1

a) b) ©

¥ (X Y]: [207 297)
[R.6.B]: [161 161 143]

[X.¥} (207 287) )
[R.GB): [195 183 173) |
L]

&

Fig. 7. Light variations in the video frame: a) original frame, b) right half
frame artificially illuminated with BF' = 25, c) right half frame artificially
illuminated with BF' = 50.
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TABLE IV
RELATIVE HR ESTIMATION ERROR FOR BF = 25 AND BF' = 50,
EVALUATED ON ROIE, ROIS, ROIL, aAND ROIT

n n -’

(B & [ & [ & [a°7]
25 11.95% 12.21% 17.38% 6.79%
50 12.87% 13.05% 17.31% | 6.19%

IV. DISCUSSION OF RESULTS

In section III-A we found that the variation of the ROI
dimensions does not affect substantially the HR estimation per-
formance. In fact, for different ROI}: and ROI? dimensions,
we obtained €. & €2. The possibility of reducing the dimension
of the ROI without affecting the HR detection performance
may be important, as it can allow to discard parts of the face
area in the frame that result in a noisy detection, like those
corresponding to beard, moustache, glasses, or hair covering
the face skin, or to apply the algorithm even on subject with
a thinner neck. Considering the total amount of 100 signals
processed, and the fact that the relative percentage error is
acceptable when below 10%, the resulting 4.74% relative error
associated to the reduction of the ROI dimensions shows the
accuracy of the approach used.

However, the reduction of the single ROI dimensions, and
consequently the decrease of the total ROI area, does not
bring any relevant improvement to the HR detection process
compared to [11], if not applied jointly with a reduction of
the Gaussian pyramidal decomposition level, from L = 6 to
L = 4. Smaller ROIs are effective if the image resolution is
consistently adjusted by proper selection of L. The same is
confirmed by the results presented in section III-C where only
after the reduction of L, the relative HR estimation error was
improved by using a smaller ROI,, area, on the rightmost
positions of the neck area.

Finally, as shown in section III-D, the artificial variation of
the frame luminance generally impacts the HR detection per-
formance in a negative fashion, with an increase of the relative
error, irrespective of the ROI considered. However, while the
ROI, results to be unusable in any location analysed, the
relative error evaluated on ROIT remains acceptable, being
well under the 10% threshold assumed as a reference in the
literature [18].

V. CONCLUSION

The results presented in this paper show that the VPG-based
HR estimation approach validated in our previous study [11]
may be further improved by the proper translation of the neck
ROL. In fact, setting the accurate positioning of the ROI,, in
the right side of the neck (anatomic left side), the relative HR
estimation error was reduced. The performance deterioration
due to alteration of brightness suggests that nonuniform light
variations may be harmful and should be avoided by prop-
erly controlling the acquisition setup. Even the reduction of
individual ROI areas does not lead to improvements, unless a
lower level of the EVM spatial decomposition (from L = 6
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to L = 4) is chosen. This implies that a smaller ROI leads to
an acceptable result if the image resolution is correspondingly
sub-sampled at a decomposition level not higher than 4. Future
work includes the execution of a significant number of tests
over more subjects, in different conditions of natural light
intensity properly measured, to evaluate the robustness of the
HR extraction, and comparison to other systems.
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