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Abstract—We discuss a joint identification and localization mi-
crophone array system based on diagonal unloading (DU) beam-
forming, which has been recently introduced for acoustic source
localization. First, we propose a DU beamformer version for the
signal enhancement problem. Then, we propose a enhanced DU
steered response power (SRP), in which the first estimate of the
source position is further refined with the information gathered
from the speaker recognition module. The enhanced SRP-DU is
obtained by weighting the frequency components with respect to
the spectral characteristics of the speaker. The approach does
not add significant computational load to the array processing.
Experiments conducted in noisy and reverberant conditions show
that the use of the DU beamformer provides better speaker
recognition performance if compared to the conventional one
since it reduces deleterious effects due to the spatially white noise
and point-source interferences. Simulations also show that the
speaker identification can improve the localization accuracy, and
it is thus interesting for applications and systems which rely on
integrated localization and speaker identification.

Index Terms—Acoustic source localization, speaker identifica-
tion, beamforming, diagonal unloading, microphone array.

I. INTRODUCTION

Microphone array processing techniques are of great interest

in various applications such as teleconferencing systems, audio

surveillance, autonomous robots, human-computer interaction,

and have a central role in a number of applications in the

speech technology area. These include speaker localization

[1]–[6], speech enhancement [7]–[10], speaker/speech recog-

nition [11]–[15]. Multichannel processing for enhancing the

acoustic front end involved in speaker/speech recognition

can be advantageous if compared to single-channel case due

to the ability in reducing background noise, reverberation,

source-point interference, especially in distant-talking condi-

tions [16]. Sensor array techniques such as beamforming [17]

and multichannel noise reduction [18] can greatly improve the

recognition accuracy in adverse environments (due to noise,

reverberation, and multisource conditions). Some possibilities

of exploiting the information gathered from a multichannel

system have been discussed for example in [11]–[15]. It

was demonstrated in [11] that the matched-filter microphone

arrays are capable of producing high speaker identification

scores in a hostile acoustic environment. In [12], multichannel

acquisition and sub-band processing are integrated to design

a speech recognition framework in which the channels are

exploited to compute a set of separate sub-band mel-frequency

cepstral coefficients (MFCCs), and to drive a separate hidden

Markov model (HMM) recognizer for each sub-band. By

including angle of arrival information in a speaker identifi-

cation system based on a HMM, a performance improvement

was reported in [13] compared to an algorithm based on the

speech spectrum only. In [14], the conventional beamforming

approach is revisited by the use of a deep neural network

(DNN), which improves the computation of the beamforming

weights and provides in turn an enhanced MFCC set in the

speech recognition. Speaker/speech recognition was enhanced

in [15] by using a microphone array and by combining the

dynamic time warping associated with all the microphones

through a fuzzy control scheme.

A microphone array system for distant speaker/speech

recognition typically consists of a localization step, a beam-

former and a recognition module [16]. Given the speaker

position estimate, the beamformer emphasizes sound waves

coming from the direction of interest. The signal enhancement

output is then fed into a recognizer. While each module has

been deeply investigated (an overview of such system can be

found in [16]), the study of joint localization and recognition

is rather limited in literature. An example is the work in [19],

that however has been developed in the context of binaural

applications.

In this paper, we discuss joint speaker identification and

localization using a microphone array. We recently introduced

the low-complexity robust diagonal unloading (DU) beam-

forming [20] for the acoustic source localization problem. We

propose the use of a novel DU beamforming version in the

signal enhancement module and a new approach that refines

the localization step based on the speaker recognition. This

scenario can be of interest for example in videoconferencing

applications, in which the estimation of sound coordinates can

be used to automatically steer a videocamera towards an active

speaker. We show that the DU beamformer can be successfully

adopted for the signal enhancement problem by an appropriate

DU procedure improving performance against spatially white

noise and point-source interference if compared to the con-

ventional beamformer. The DU beamformer is implemented

without any a priori knowledge of noise-plus-interferences

information, which is in general request in the implementation

of high resolution beamformers such the well-known minimum

variance distortionless response (MVDR) beamformer [8]. The

identification step is computed on the enhanced signal using

a Gaussian mixture model (GMM) of the MFCC statistics.
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Fig. 1. Schematic diagram of the proposed system for joint identification and localization of a speaker.

II. JOINT IDENTIFICATION AND LOCALIZATION

This section describes the proposed system. An overview is

given in the first subsection. Then, we summarize the SRP-DU

described in [20], and we present the new DU beamformer

for the signal enhancement problem. Next, we summarize

the identification module used in this paper, and we finally

present the new enhanced DU beamformer for the localization

problem.

A. System Overview

The speaker identification and localization system of choice

in this study is made of a uniform linear array (ULA) of M

sensors located in a noisy and reverberant environment. The

proposed system consists of four main building blocks: 1) the

localization module, 2) the signal enhancement module, 3)

the speaker identification module, 4) the refined localization

module. A steered response power (SRP) DU beamformer [20]

operated in far-field mode to estimate the direction of arrival

(DOA) θ is used for the localization, a DU beamformer for

the signal enhancement module, a GMM-MFCC scheme for

the identification process. When the speaker identification is

available, the spectral information is used to refine the speaker

localization step in the enhanced SRP-DU computation. The

organization of the speaker identification and localization

components is illustrated in Figure 1.

B. The Localization Module: SRP-DU

In general, a beamformer is a spatial filter technique which

is aimed at leaving untouched the acoustic energy related to

sources located along a given direction of arrival, while mini-

mizing the energy of noise and sources coming from directions

other than the desired one. An acoustic SRP beamformer is

typically computed in the frequency-domain by calculating

the response power of each frequency bin and by fusing the

narrowband components. The power spectral density (PSD) of

the DU beamformer [20] for a frequency bin f is given by

P (f, θ) =
1

aH(f, θ)(tr(Φ(f))I−Φ(f))a(f, θ)
, (1)

where tr(·) is the operator that computes the trace of a matrix,

a(f, θ) is the steering vector, I is the identity matrix, H

denotes the Hermitian (complex conjugate) transpose, and

Φ(f) = E{x(f)xH(f)} is the PSD matrix of the micro-

phone signals (E{·} denotes mathematical expectation and

x(f) = [X1(f), X2(f), . . . , XM (f)]T is the vector of the

frequency-domain signals sensed by the M sensors, T denotes

the transpose operator). The DU beamformer exploits the

orthogonality property between signal and noise subspace

by the removal or the attenuation of the signal subspace

from the PSD matrix using a diagonal unloading procedure

(for a detailed discussion on the DU procedure, see [20]).

The P (f, θ) is related to the energy contribution of a single

frequency bin, and a function providing the energy information

of the whole frequency spectrum (the broadband PSD) can be

obtained by merging the contribution by some fusion criterion.

In [21], we proposed the following normalized incoherent

frequency fusion

P (θ) =

fmax∑

f=fmin

P (f, θ)

max
θ

[P (f, θ)]
, (2)

where max[·] denotes the maximum value, fmin and fmax

denote the considered frequency range. The normalization

lends a high resolution to the spatial spectrum, but emphasizes
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the noise in those narrowband beamformers in which the

SNR ratio is low, thus providing a misleading contribution

to the fusion. The broadband PSD resulting from the fusion

is characterized by high energy peaks corresponding to those

directions from which acoustic energy is sensed, thus the

DOA estimation of the active source is provided by maximum

energy peak search:

θ̂s = argmax
θ

[P (θ)]. (3)

C. The Signal Enhancement Module: DU Beamformer

The output of a narrowband beamformer Y (f, θ) for fre-

quency f and look direction θ, is obtained as

Y (f, θ) = w
H(f, θ)x(f), (4)

where w(f, θ) is a column vector containing the beamformer

coefficients for time-shifting, weighting, and summing the

data, so to steer the array in the direction θ. The DU trans-

formation is obtained by subtracting an opportune diagonal

matrix from the covariance matrix Φ(f) of the array output

vector. As a result, the DU beamforming removes as much as

possible the signal subspace from the covariance matrix and

provides a high resolution beampattern. In practice, the design

and implementation of the DU transformation is simple and

effective, and is obtained by computing the matrix (un)loading

factor.

Given the matrix Φ(f) which represents the array output

vector covariance, the DU transformed matrix can be written

as

Φ
′

DU(f) = Φ(f)− µI, (5)

where µ is a real-valued, positive scalar, selected in such a

way that the resulting PSD matrix is negative semidefinite for

exploiting the orthogonality property between subspaces. In

the single source case with spatially white noise the optimal

DU implementation can be obtained by imposing that the

eigenvalue corresponding to the signal subspace is null, and

that the eigenvalues corresponding to the noise subspace are

non-zero. The value of µ that verifies such constraints can be

shown to be

µ = tr(Φ(f))− (M − 1)σ2, (6)

where σ2 is the noise variance for all sensors. Theoretically,

this solution totally removes the signal subspace from the

PSD matrix and the beamformer output is therefore null in

the source direction. Note that in practice the orthogonality

property is partially exploited due to the reverberation and the

multisource scenario. The DU beamformer is formulated by

using an optimization problem with an orthogonality constraint

that aims to achieve the signal subspace removal [20], the

optimization reads as:

minimize ||w(f, θ)− a(f, θ)||2,

subject to u
H
s w(f, θ) = 0,

(7)

where us is the signal subspace of Φ(f). The solution to the

optimization problem is wDU(f, θ) =
(

1

λ′

v

I
)
Φ

′

DU(f)a(f, θ),

where λ′v is the noise eigenvalue of the matrix Φ
′

DU(f) (more

details on the analytical solution can be found in [20]). In order

to take into account the signal enhancement problem, we gen-

eralized here the DU beamformer by defining a parametrized

solution given by

ΦDU(f) = Φ(f)− (1 + α)tr(Φ(f))I, (8)

where α ≥ 0 is a tradeoff parameter between noise reduction

and speech distortion. When α = 0 the maximum noise

reduction and interference suppression is obtained, leading

however on a distortion of the speech signal since the PSD

matrix contains both signal, noise and interference. By in-

creasing the value α, we can reduce the noise suppression

and distortion. We adopt successfully a value α = 0.5 in the

simulation section. The DU procedure provides a solution for

the following beamforming coefficients w:

wDU(f, θ) =
ΦDU(f)a(f, θ)

aH(f, θ)ΦDU(f)a(f, θ)
. (9)

Given the beamforming coefficients, is thus possible to com-

pute the spatially filtered signal with respect to the estimated

DOA, which will provide an enhanced version of the target

source signal.

D. The Identification Module: MFCC-GMM

Given that Q is the number of triangular filters in the mel

filter bank, the output of the equalized filter bank in the signal

enhancement output is computed as

ei = log
( fmax∑

f=fmin

E{|Y (f, θ)|2} · ψi(f)
)

, i = 1, ..., Q, (10)

where ψi(f) is the i-th triangular bandpass filter. The MFCC

vector is then computed as:

m = Ce, (11)

where e = [e1, e2, . . . , eQ]
T , and C = [cij ] is the discrete

cosine transform (DCT) matrix

cij =

√
2

Q
cos

(π(i− 1)(j − 0.5)

Q

)
,

i = 1, 2, . . . , N, j = 1, 2, . . . , Q,

(12)

where N is the dimension of the MFCC vector that includes

the zero-th order coefficient. The speaker identification is

finally based on a conventional GMM statistical model of the

MFCC cues computed as above.

E. The Refined Localization Module: Enhanced SRP-DU

When the speaker identification is available, the enhanced

SRP-DU is adopted in the localization computation. Similarity

to [22], the weighting factors are used to attenuate the errors

in the broadband SRP fusion process. The weighting factors

are related to the spectral information of a known speaker, and

on some features of the PSD function: the skewness and the

overall energy of the PSD. The enhanced DU is given by

Pe(θ) =

fmax∑

f=fmin

δ(f)
P (f, θ)

max
θ

[P (f, θ)]
, (13)

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 23



−90 −60 −30 0 30 60 90
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

DOA (degree)

N
o

rm
a

liz
a

te
d

 P
S

D

SRP−DU

Enhanced SRP−DU 

speaker position

Fig. 2. The PSD of the SRP-DU and the enhanced SRP-DU.

where

δ(f) =
10log

10
(E{|X̄1(f)|

2})ΩP (f)∑
θ P (f, θ)

, (14)

where E{|X̄1(f)|
2} is the averaging signal power at reference

sensor obtained during the training phase, P (f, θ) is calculated

using equation (1), and ΩP (f) is the skewness of the PSD

P (f, θ) for all candidate DOAs in the analysis frame defined

as

ΩP (f) =
1

Nθ

∑
θ[P (f, θ)− P̄ (f, θ)]3

( 1

Nθ−1

∑
θ[P (f, θ)− P̄ (f, θ)]2)

3

2

, (15)

where P̄ (f, θ) = 1

Nθ

∑
θ(P (f, θ)) and Nθ is the number of

candidate DOAs. The skewness measure gives information

of the peakedness distribution of a PSD function [22]. An

ideal normalized PSD function is characterized by a delta

Dirac in the source position with a null value in the other

directions. This means that the overall energy of the PSD

spectrum is equal to 1, and the skewness measure has the

maximum possible value. Hence, the enhanced DU assigns

higher importance to the narrowband PSD components that are

more similar to an ideal SRP and that have affinities with the

mean spectrum of the speaker. Figure 2 shows the enhancing

effect of weighting the narrowband power responses, visible in

terms of a higher resolution for the DOA related to the source

position and of a larger attenuation of the power for the other

directions.

III. SIMULATIONS

The speaker identification and localization performance

observed is illustrated through a set of simulated experiments.

A reverberant room of 7 m × 5 m × 3 m simulated with

an improved image-source model [23] was used. A ULA

of 8 microphones, with distance between microphones of

0.04 m, was used. A localization task in two-dimensions was

considered. Therefore, both microphones and the source were

positioned at a distance from the floor of 1.3 m. The spatial

resolution was 1 degree. The sampling frequency was 48

kHz, the block size L was 2048 samples with an overlap

of 512 samples. A Hann window was used. A frequency

range between fmin = 80 Hz and fmax = 8000 Hz was

used. The GMM model parameters were set to 50 for the

components and 0.01 for the regularization parameter. MFCC

TABLE I
THE IDENTIFICATION AND LOCALIZATION PERFORMANCE IN SPATIALLY

WHITE NOISE CASE WITH A RT60 OF 0.2 s.

Speaker identification Speaker localization

SNR AI (%) RMSE (degree)
(dB) SC DS DU SRP-DU Enhanced SRP-DU

20 96.67 100 100 5.77 3.03
15 81.67 98.33 98.33 6.09 3.08
10 53.33 95.00 95.00 5.48 4.11
5 23.33 78.33 80.00 6.65 3.59
0 15.00 38.33 73.33 7.27 4.09
-5 11.66 18.33 55.00 7.93 4.49
-10 5.00 16.66 41.66 8.65 5.42

vectors of length N = 22 were used as input to the GMM

models. Speech signals from the TSP speech database was

used [24]. In the training phase, we consider the speaker source

positions at a distance from the array of 0.8 m and a DOA

of 0 degree. Recordings of 1 min each from 20 different

speakers (10 males, 10 females) were used to train their

respective GMM models through a conventional expectation-

maximization algorithm. The training of the GMMs was

conducted by setting an averaging SNR of 30 dB, which

was obtained by adding mutually independent white Gaussian

noise to each channel. The identification tests were conducted

for spatially white noise and point-source interference condi-

tions by using recordings of 3 s each from the 20 speakers.

We compared the performance of the speaker identification

based on conventional single channel (SC) MFCC-GMM, on

the microphone array system with conventional beamforming,

i.e., the delay and sum (DS) beamformer [17], and with the

proposed DU. To reduce the temporal fluctuations due to the

nonstationary nature of the speech signal, the broadband PSD

was smoothed with a single-pole recursive filter for both SRP-

DU and enhanced SRP-DU, which are implemented with a

single snapshot. Three positions were used during the Monte

Carlo simulation with distance from the array and DOA:

(2 m, -8.8 degrees), (1.3 m, -28.6 degrees), (1.6 m, 15.3

degrees). In each position, the identification and localization

performance is measured for all 20 speakers. Performance is

reported in terms of the percentage of identification accuracy

(IA) estimates for the speaker identification and by the root

mean square error (RMSE) for all the estimates for the speaker

localization. Tables I and II show the speaker identification and

DOA estimation results for the spatially white noise case at

variation of SNR and in two reverberant time (RT60) condi-

tions: 0.2 s and 0.5 s. As we can observe, the identification

based on DU beamformer outperforms the one based on SC

and on DS beamformer when the noise level increases. In low

SNR conditions, range [5,-15] dB, we obtain a significant IA

increment by using the proposed DU beamformer. We can

also note the improved performance of the enhanced SRP-DU

in all conditions. Next, the evaluation with a point-source

interference was performed by considering a fan noise signal

at position: 3 m far from the center of the array with a DOA of

84.4 degrees. The RT60 was set to 0.2. The results depicted in
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TABLE II
THE IDENTIFICATION AND LOCALIZATION PERFORMANCE IN SPATIALLY

WHITE NOISE CASE WITH A RT60 OF 0.5 s.

Speaker identification Speaker localization

SNR AI (%) RMSE (degree)
(dB) SC DS DU SRP-DU Enhanced SRP-DU

20 100 100 100 5.94 3.76
15 90.00 96.66 96.66 6.31 3.96
10 56.66 93.33 93.33 6.79 4.30
5 28.33 70.00 78.33 6.72 4.63
0 16.66 33.33 65.00 8.17 5.12
-5 13.33 16.66 51.66 8.71 5.82

-10 5.00 15.00 25.00 10.47 7.65

TABLE III
THE IDENTIFICATION AND LOCALIZATION PERFORMANCE IN

POINT-SOURCE INTERFERENCE CASE WITH A RT60 OF 0.2 s AN SNR OF

30 dB.

Speaker identification Speaker localization

SIR AI (%) RMSE (degree)
(dB) SC DS DU SRP-DU Enhanced SRP-DU

20 96.66 98.33 98.33 5.85 5.55
15 81.67 90.00 90.00 6.10 5.89
10 10.00 75.00 75.00 6.79 6.34
5 21.66 51.66 55.00 8.47 7.47
0 8.33 31.66 40.00 17.72 13.04
-5 5.00 11.66 23.33 21.45 18.64

-10 5.03 6.67 6.67 29.78 28.08

Table III at variation of the signal-to-interference ratio (SIR)

show the improvement performance for both identification and

localization up to an SNR of -5 dB. However, we can note

smaller differences between DS and DU if compared to the

adverse spatially white noise condition.

IV. CONCLUSIONS

In this paper, we presented a joint identification and local-

ization microphone array system based on DU beamforming.

We presented a DU version specifically designed for the

signal enhancement problem. We showed that the use of DU

beamformer can improve the speaker identification in adverse

spatially white noise and point-source interference conditions.

Beside that, we introduced an enhanced SRP-DU algorithm

that is based on the spectral information of the speaker and

on skewness and overall energy measures of narrowband PSD

functions. We showed that the localization accuracy can be

improved if the speaker is known.
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