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Abstract— Microsoft Kinect has been gaining popularity in
home-based rehabilitation solution due to its affordability and
ease of use. It is used as a marker less human skeleton tracking
device. However, apart from the fact that the skeleton data are
contaminated with high frequency noise, the major drawback
lies in the inability to retain the antropometric properties,
like the body segments’ length, which varies with time during
the tracking. In this paper, a particle filter based approach
has been proposed to track the human skeleton data in the
presence of high frequency noise and multi-objective genetic
algorithm is employed to reduce the bone length variations.
In our approach multiple segments in skeleton are filtered
simultaneously and segments’ lengths are preserved by consid-
ering their interconnection unlike other methods in available
literature. The proposed algorithm has achieved MAPE of
3.44% in maintaining the body segment length close to the
ground truth and outperforms state-of-the-art methods.

Index Terms— Kinect, Particle filter, NSGA, Multi objective
optimization

I. INTRODUCTION

Over past few decades, several motion capturing technolo-
gies have been explored and applied to human monitoring for
health care applications. In recent days, the demand for home
based affordable rehabilitation has increased for movement
analysis in gait, balance and postural stability. This is mainly
to prevent fall and improve in the movement of body parts
for people affected by stroke [1] and elderly population [2].
There are mainly two types of movement analysis namely,
marker based and markerless. Marker based systems like
Vicon are very much popular in human movement analysis
for their reliability, precision and accuracy. However these
systems are very expensive and require skilled personnel
for operation [3]. On the other hand, marker less motion
tracking solutions are mostly based on radar and ultrasonic
technologies. As an example, a radar based system was
proposed in [4] for gait monitoring. The applicability of
these systems in real world is limited due to the problems
like multipath fading and very low range of operation etc.
The Microsoft Kinect Xbox One is a low cost markerless
motion tracking device [5], which is a potential candidate
for 24 ×7 monitoring device in home rehabilitation [6][7]
solution. It consists of a RGB camera and infrared (IR)
based depth sensor, which can track human skeleton joint
positions in 3D space similar to other marker based systems
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like Vicon [8] [9]. The major problem in Kinect is that
the body segments’ length (bone length) calculated from
joint coordinates vary with time. Ideally, the bone lengths
should remain constant through out the time irrespective of
segment orientation in 3D space [10]. Malinowski et al. [11]
thoroughly studied variation of eight bone lengths during
walking and running in the treadmill. An average bone length
disparity of 9-11 cm in Kinect sensor was reported in their
work [11]. Moreover, Kinect shows significant variation in
bone lengths compared to Vicon as discussed in [12]. In
addition to these discrepancies, Kinect coordinates are also
noisy due to IR interference, external lighting conditions and
non-anthropometric skeleton model [13] etc. These issues
make Kinect difficult to use in clinical applications like
rehabilitation.

In order to reduce the noise in joint coordinates, many time
domain filters like averaging, median, mean square filters
etc. are proposed in [14]. In [15], constant Kalman filter and
Weiner Process Acceleration (WPA) Kalman filter are used
to smooth and track joint position simultaneously. However
all these methods are mainly inclined on maintaining the
latency and improving individual joint positions.

The focus on improving the bone length variation is still
limited to few literature. In [16] a constrained Kalman filter
based method was proposed to track the joint positions by
preserving the bone length over time. Potential drawback of
this method [16] is that it considers a single body segment
at a particular time stamp for filtering without consider-
ing interconnection between body segments. So naturally
filtering of one segment may negatively affect the other
connected segments. For example elbow joint cannot be
filtered efficiently by this method [16] without considering
both the arm and forearm simultaneously. In [17] similar
approach is taken to maintain the bone length constant
using Kalman filter and Differential Evolution algorithm.
Hence it [17] also suffers from the same problem as that of
[16]. Specifically, the constraints formulated in these works
have focused on preserving the bone length of single body
segment at a time without being concerned about structural
build of human skeleton.

Our motivation is to preserve the bone lengths of all
the connected segments simultaneously by considering their
dependencies on each other due to the presence of com-
mon joints between them. Hence, a novel Non-dominated
Sorting Genetic Algorithm (NSGA) [18] based particle fil-
tering method is developed so that particle filter can track
multiple skeleton joints simultaneously whereas NSGA will
be responsible for maintaining the bone lengths. Moreover,
novelty of the proposed work also lies in the constraint
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formulation to ensure that the filtered coordinates will not
drastically deviate from the original coordinates (which en-
sures smooth tracking). In order to achieve this, the constraint
is mathematically formulated and applied on both the static
and dynamic postures for performance evaluation. A NSGA
based improvement of particle filter was done in [19] but our
method enables to extend other multi-objective problems in
conjunction with the particle filter.

The paper is organized as follows. Proposed methodology
and database creation are presented in Section II and Section
III respectively. Section IV contains the results along with
its comparison with existing methods. Finally conclusion and
discussion of future work are summarized in Section V.

II. PROPOSED METHOD

Kinect uses IR Projector, IR sensor and RGB camera to
track human joint positions in 3D world co-ordinate system
consisting of axes (a,b,c). At any instance of time t it
provides noisy co-ordinates of N joints (for Kinect Xbox One
N = 25), χt =

(
ai,bi,ci

)
where i = 1,2, . . . ,N. Unfortunately,

the body segment lengths computed from χt ∀ t = 1,2, . . . ,T
vary with time which is quite unexpected in human phys-
ical structure. In order to remove this noise, a constraint
is formulated based on two factors derived from human
physical (skeleton) structure i.e. (I) bones (body segments)
are interconnected to each other and (II) the length between
any physically connected joints should remain constant over
time. Specifically the constraint is defined in such a way
that it will preserve the entire human skeleton structure and
provide more realistic anthropometric measurements. Hence
a dynamic filtering based approach with multiple bone length
constraints is proposed to denoise χt obtained from Kinect. It
is realized through the fusion of Particle filter algorithm and
NSGA. In this context, the bone length constraint is defined
as:

Definition 2.1: A pair of joints i and j are said to comply
to bone length constraint if the two joints lie on a single bone
and their coordinates should follow (1) for all time instances.

‖χ i
t −χ

j
t ‖2 = L2

i, j (1)

Where χ i
t is the coordinate of ith joint at time t and Li, j is the

physical (actual) length of the bone present between those
two joints.

In the proposed method, the state vector is formed from
χt as x = [a1, . . . ,am,b1, . . . ,bm,c1, . . . ,cm]

T , where m(≤ N)
is the total number of joints considered for filtering. The
state vector contains all the connected body segments for
e.g. 6-5, 5-4, 4-20, 20-8, 8-9, 9-10 are such six segments
consisting of seven joints as shown in Fig. 1. Our particle
filter based method models the joint motion trajectory as a
Linear Dynamic Systems (LDS). In this LDS, the states are
evolved as xt = f (xt−1,ut−1) where f is the state transition
function and ut is process noise following i.i.d. (independent
and identically distributed) N (0,σu). The joint position
tracking is carried out recursively by estimating xt at each
time step t depending on the Kinect based measurements
yt = h(xt ,nt) where h is the measurement function and

Fig. 1: Skeleton joints obtained from Kinect 2

nt is the measurement noise following i.i.d. N (0,σn). We
have selected the covariance matrix of process noise and
measurement noise to be diagonal with value 0.01. The
whole process involves two steps called prediction of xt from
measurements y1:t−1 and correction of xt given observed yt
as shown in (2) and (3) respectively.

p(xt |y1:t−1) =
∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1 (2)

p(xt |y1:t) =
p(yt |xt)p(xt |y1:t−1)∫
p(yt |xt)p(xt |y1:t−1)

(3)

The posterior probability density p(.) computed using (3)
is approximated with the help of Monete Carlo (MC)
simulations. MC simulations approximate the Probability
Density Function (PDF) by a set of random samples and
corresponding weights as given in (4).

p(xt |y1:t) =
S

∑
i=1

wi
tδ (xt −xi

t) (4)

Here, S is the number of particles obtained from importance
sampling scheme [20] by defining the importance density
function q(.) and in our case we have selected S = 400. The
generated S particles undergo state transitions at each time
instance as given in (2) and the corresponding weight wi

t of
each particle is updated sequentially [20] using (5)

wi
t ∝ wi

t−1
p(yt |xi

t)p(xi
t |xi

t−1)

q(xi
t |xi

t−1,yt)
(5)

The sequential update (5) is simplified [20] to (6) by taking
q(xi

t |xi
t−1,yt) = p(xt |xi

t−1)

wi
t ∝ wi

t−1 p(yt |xi
t) (6)

As the state vector x operates on multiple (m) joints
simultaneously, it eventually preserves the interconnection
between body segments. However, it is not responsible to
keep the individual bone length constant. To achieve this
and harness the power of particles, in the proposed filtering
approach, a population based Genetic algorithm is employed.
Even so, this algorithm has to deal with two objectives i.e. (I)
the filtered coordinates should not deviate abruptly from the
original coordinates obtained from Kinect and (II) minimize
the bone lengths’ variations over time. Mathematically the
objective function for each particle i at t is formulated as
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Fig. 2: Steps included in the NSGA

given in (7).

max
xt

2∗m
∑
j=1

w( j)i
t (7)

and min
xt

∑
∀valid i, j

(l(xt)i, j−Li, j)
2

Where l =
{

li, j|(i, j)≤ N and i 6= j
}

is bone length vector
computed from S and L =

{
Li, j|(i, j)≤ N and i 6= j

}
is the

actual lengths (ground truth) of the segments. According to
(7) maximizing the sum of weights of all the state variables at
a particular time step will ensure that the filtered coordinates
are close to the measurement vector yt , as w is modeled
as likelihood function in (6). This type of multi-objective
optimization is handled by NSGA [19]. S particles form
the initial population vector of NSGA and undergo multiple
steps as depicted in the Fig. 2 to provide optimized particles.
Finally, the weighted mean of the particle distribution is
taken as the final estimation of state vector at time t and
it is expressed as x̂t = ∑i wtxt . x̂t is expected to provide
corrected joint coordinates by satisfying both the constraints
as mentioned earlier in the section. In this scenario, the
NSGA helps the particle filter to find the multi-objective
solutions by being used as an add-on to original particle filter
algorithm. This method can also be extended to handle other
multi-objective problems with the benefit of particle filters
unlike the method given in [19]. It is to be noted that the
degeneracy problem of particle filter i.e. most of the weights
become insignificant, is avoided by re-sampling strategy as
mentioned in [20]. All particles and corresponding weights
are uniformly randomly initialized at time instance t = 0
and recursively estimated for the successive timestamps. The
overall algorithm is explained in the Algorithm 1.

III. DATABASE CREATION

Twenty six subjects (age: range 24-55 years, weight: 52kg-
97kg and height: 1.42m-1.96m) with no symptoms of neuro-
physiological or musculo-skeletal disorders, have been cho-
sen for the study. These subjects belong to TCS Innovation
lab and voluntarily participated in the data collection. The
subjects performed active Range Of Motion (ROM) exercises
- shoulder abduction/adduction or flexion/extension in front
of the Kinect Xbox One sensor placed at a distance of 2
meter approximately. In the beginning of the exercise, the
subjects are told to stand in a stationary posture for 30
seconds and then perform the exercise. Dataset comprises
of 25 skeleton joint coordinates for both static and dynamic
postures.

Fig. 3: Variation of right arm length (segment 20-8)

Algorithm 1 Proposed algorithm
Initialize:

Random initialization of particles xi
0 and weights

wi
0 at t = 0 for i = 1,2..S

loop on t:
for each particle i = 1 to S do

xi
t ← xi

t−1 +ut : state Transition
wi

t ← p(yt |xi
t) : weight allocation

C1(i) = ∑
2∗m
j=1 w( j)i

t : 1st Cost
C2(i) = ∑(l∀segments(xi

t)−L∀segments)
2 : 2nd Cost

end for
xt ← NSGA(xt ,C1,C2): maximize(C1), minimize(C2)
wi

t ← wi
t−1 ∗ p(yt |xi

t), ∀i
wt ← wt/∑wt
if degenerecy in wt then

(xt ,wt)← resample(xt ,wt).
end if
x̂t = ∑i wtxt .
if t < T then

goto loop.
else return
end if

IV. RESULTS AND DISCUSSIONS

Our algorithm is evaluated on the basis of its ability to
minimize the bone lengths’ variations computed from the
filtered joint coordinates with respect to actual bone lengths.
We have considered joints from both right and left hands
simultaneously i.e. 6-5, 5-4, 4-20, 20-8, 8-9, 9-10 as shown
in Fig. 1 for filtering. Fig. 3 (red dotted line) clearly depicts
the variation in bone length between joint number 20 and 8
while performing the shoulder abduction/adduction exercise
in the right hand (between time steps or frame numbers
380 to 540). Moreover, from the Fig. 4 it is quite clear
that length of the left arm also varies even it is almost in
static posture during the entire exercise. The observation
holds true for all other body segment lengths. In order to
demonstrate robustness of the proposed algorithm, it has been
applied on the above mentioned seven joints simultaneously
and green line in Fig. 3 and Fig. 4 portray how it is able
to bring the associated segment lengths close to the actual
ones. It is quite evident from the Fig. 5 that the bone length
corrections don’t come by randomly (abruptly) adjusting the
joint coordinates but by closely following joint positions over
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Fig. 4: Variation of left arm length (segment 4-5)

time. On the contrary, in constrained Kalman filter [16], the
joint coordinates greatly deviates from actual trajectory to
satisfy the bone length constraint. Moreover in a very small
duration (zone U1 of Fig. 5), the joint coordinate corrected
by the algorithm [16] changes drastically which is quite
unexpected. In addition to that, Fig. 3 and Fig. 4 also depict
the performance comparison of our proposed method with
respect to state-of-the-art algorithms [16] and [20] for right
and left arm lengths. The outcome of constrained Kalman
filter [16] is inferior to our approach for both dynamic
(right arm) and static body segments (left arm) because the
formulation doesn’t include the interconnection between the
joints. As shown in Fig. 3, constrained Kalman filter also
fails to adopt the changes in posture as it varies abruptly
in zone U1 and U2 (where the right arm starts moving)
whereas it performs well in between U1-U2 (where the right
arm is at rest). As the formulation of our proposed particle
filter accommodates the inter relationships between body
segments, it resists abrupt changes in the bone length and
maintains the variation of bone lengths minimum during the
transition of body segments from resting state to dynamic
state. Moreover, other constraint less methods ([20]) closely
follow the unfiltered bone length and performance is not
satisfactory compared to the constrained approaches (i.e. [16]
and proposed one). The overall performance is evaluated
based on the parameter Mean Absolute Percentage Error
(MAPE) between the bone length obtained from filtered
signal and original signal for all time instances. MAPE ( in
%) is mathematically defined as (8). It is desirable to have
minimum MAPE to ensure better performance.

MAPE =
100
T

T

∑
t=1
|L− l(xt)

L
| (8)

Table I presents the comparison between our method and
state-of-the-art algorithms mentioned in [16], [15] and [20].
The evaluation is carried out per bone length based on
the average of MAPE over all subjects. Here the constant
velocity models are considered for Kalman filter based
methods. It is clear from the Table I that our algorithm
is able to minimize the MAPE for all segments over all
subjects whereas performance of other ones are not so
satisfactory. Finally, our particle filter and NSGA based

Fig. 5: Temporal variation of coordinate “a” for joint no. 8

TABLE I: Comparison of four methods in terms of MAPE

Segments Kalman Constrained Particle Proposed
bet. joints Filter[15] Kalman[16] Filter[20]

20-8 15.60 13.92 17.66 3.82
8-9 16.60 14.25 16.77 4.22

9-10 22.01 19.57 22.52 5.69
20-4 17.17 17.17 18.39 2.71
4-5 13.99 13.42 14.20 1.74
5-6 23.97 23.71 24.36 2.46

algorithm outperforms them and is able to achieve a MAPE
of 3.44% over all the subjects and all the joints in comparison
to constrained Kalman filter [16] with MAPE ≈ 17%.

V. CONCLUSIONS

In this paper we have proposed a probabilistic framework
for estimating the skeleton joint locations using particle filter
based joint location estimation approach accompanied with
the Non-dominated Sorting Genetic Algorithm to reduce the
variation in bone length. This method can track multiple body
segments and can reduce the variation in the segments’ length
by considering their interconnection in dynamic as well as
static conditions. This filtering approach is able to preserve
the skeleton structure in a more realistic manner. Experimen-
tal results on healthy subjects demonstrate remarkable reduc-
tion in the MAPE compared to the earlier reported methods
including constrained Kalman [16] and standalone particle
filter [20] approaches. In future we plan to experiment with
the patient data and measure the improvement in accuracy
on the clinically derived parameters like joint angles.
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