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Abstract—In a recent paper, we have proposed a novel ap-
proach for measuring the room impulse response (RIR) robust
toward the nonlinearities affecting the power amplifier or the
loudspeaker. The approach is implemented by modeling the
acoustic path as a Legendre nonlinear (LN) filter and by
measuring the first-order kernel using perfect periodic sequences
(PPSs) and the cross-correlation method. PPSs are periodic
sequences that guarantee the perfect orthogonality of the basis
functions of a certain nonlinear filter over a period. For LN
filters, PPSs have approximately a uniform distribution. We have
shown that also the Wiener Nonlinear (WN) filters, which derive
from the truncation of the Wiener series, admit PPSs, whose
sample distribution approximates a Gaussian distribution. Thus,
WN filters and their PPSs appear more appealing for measuring
the RIR. The paper discusses RIR measurement using WN
filters and PPSs and explains how PPSs for WN filter suitable
for RIR identification can be developed. Experimental results,
using signals affected by real nonlinear devices, illustrate the
effectiveness of the proposed approach and compare it with that
based on LN filters.

I. INTRODUCTION

Measuring the room impulse response (RIR) is an important

operation in acoustic and audio signal processing. It is used

for analyzing and characterizing the room response, estimating

parameters like reverberation time, early decay time, clarity,

definition, interaural cross-correlation, lateral energy fraction,

etc. [1]. It is also the first step of many audio applications, like

room response equalization [2], spatial audio rendering [3],

virtual sound [4], room geometry inference [5], and others.

Different approaches have been proposed for measuring the

RIR: from the use of impulsive signals and time stretched

pulses, to maximal length sequences (MLSs) [6], perfect pe-

riodic sequences (PPSs) for linear systems [7], linear sweeps,

exponential sweeps (ESs) [8], [9], perfect sweeps [10], and

many others. A problem affecting many of these approaches

is the sensitivity to nonlinearities in the measurement systems.

While the acoustic path can be considered as a linear system,

the high volume of the measurement signal used to contrast

noise often causes the appearance of nonlinear effects in the

power amplifier or in the loudspeaker of the measurement

system. These nonlinear effects are often the cause of artifacts

in the measured signal, such as spikes in the measured RIR

using MLSs approach [11]. ESs [8], [9] and synchronized

This work was supported in part by DiSPeA Research Grant and by DII
Research Grant.

ESs [12] are often used to measure the RIR contrasting the

effect of measurement system nonlinearities. Indeed, these

techniques can be made immune to nonlinearities, provided

the measurement system can be modeled as a memoryless

nonlinearity followed by a linear filter, i.e., as a Hammerstein

filter [13]. Unfortunately, for nonlinearities with memory, also

the measurement with ES technique is affected by artifacts

caused by nonlinear distortions [14], [15].

A novel approach for RIR measurement contrasting the

effect of nonlinearities was proposed in [16], [17]. In this

approach the entire measurement system (i.e., the power am-

plifier, the loudspeaker, the acoustic path and the microphone)

is modeled as a Legendre nonlinear (LN) filter. LN filters are

linear combinations of polynomial basis functions orthogonal

for white uniform inputs [18]. They admit PPSs, i.e., periodic

sequences that guarantee the perfect orthogonality of the basis

functions over a sequence period. Using a PPS input, the

coefficients of the LN filter can be estimated with the cross-

correlation method, i.e., computing the cross-correlation be-

tween the system output and the basis functions. In [16], [17],

the first-order kernel, i.e., the set of linear terms coefficients,

of the LN filter representing the measurement system is first

measured using a PPS and then used to estimate the RIR.

Another family of polynomial filters with orthogonal basis

functions for white Gaussian inputs are the Wiener nonlinear

(WN) filters, which derive from the truncation of the Wiener

nonlinear series. Also WN filters admit PPSs [19], whose sam-

ple distribution approximates a Gaussian distribution. From

this point of view, the PPSs for WN filters appear more

appealing for measuring RIRs since for the same power they

less excite the highest amplitudes and they better approximate

the distribution of natural sounds. Thus, in this paper we

discuss RIR measurement using WN filters and PPSs. The

PPSs for WN filters developed in [19] are not suitable for RIR

measurement. In fact, their period increases geometrically with

the memory length of the filter and becomes prohibitively large

even for small memories. Thus, here we also discuss how PPSs

suitable for RIR identification, i.e., with period proportionate

to the filter memory length, can be developed. Experimental

results employing signals affected by real nonlinear devices

illustrate the effectiveness of the proposed approach and

compare it with that based on LN filters.

The rest of the paper is organized as follows. In Section

II, WN filters are reviewed and their identification with PPSs
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TABLE I
BASIS FUNCTIONS OF WN FILTERS.

Order 1:
x(n), x(n− 1), . . . , x(n−N + 1)

Order 2:
H2[x(n)], H2[x(n− 1)], . . . , H2[x(n−N + 1)],
x(n)x(n− 1), ..., x(n−N + 2)x(n−N + 1),...

x(n)x(n−D), ..., x(n−N +D + 1)x(n−N + 1).

Order 3:
H3[x(n)], H3[x(n− 1)], . . . , H3[x(n−N + 1)],

H2[x(n)]x(n− 1), ...
..., H2[x(n−N + 2)]x(n−N + 1),...

x(n)x(n− 1)x(n− 2), ...
..., x(n−N + 3)x(n−N + 2)x(n−N + 1),...

x(n)x(n−D + 1)x(n−D), ...
..., x(n−N +D + 1)x(n−N + 2)x(n−N + 1),

is discussed. The proposed RIR measurement technique is

presented in Section III. PPSs for WN filters suitable for

RIR measurement are derived in Section IV. Experimental

results are discussed in Section V. Conclusions are presented

in Section VI.

The following notation is used: N (0, σ2
x) is the zero mean,

variance σ2
x, Gaussian distribution, ∗ indicates convolution,

< · >L denotes average over L consecutive samples.

II. WN FILTERS AND PPSS

The WN filters are polynomial filters that derive from the

double truncation, with respect to order and memory, of the

Wiener series [20]. According to the Stone-Weierstass theo-

rem, they can arbitrarily well approximate any discrete time,

time-invariant, finite memory, continuous, nonlinear system,

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)] (1)

for any memory N , where f is a continuous function from R
N

to R. WN filters are the linear combination of polynomial

basis functions that are orthogonal for any white Gaussian

input signal x(n) ∈ N (0, σ2
x). For N = 1, the basis functions

can be obtained from the Gram-Schmidt orthogonalization for

x(n) ∈ N (0, σ2
x) of the monomials

{1, x(n), x2(n), x3(n), . . .}, (2)

obtaining the set of orthogonal polynomials.

{1, x(n), x2(n)− σ2
x, x3(n)− 3σ2

xx(n), . . .}. (3)

According to [21], these are Hermite polynomials of variance

σ2
x and can be generated with the recursive relation

Hj+1[x(n)] = x(n)Hj [x(n)]− jσ2
xHj−1[x(n)], (4)

with H0[x(n)] = 1 and H1[x(n)] = x, and Hj [x(n)] the Her-

mite polynomial of degree j. In what follows, for compactness

the Hermite polynomials of order 0 and 1, will be indicated

as 1 and x(n), respectively, while the other polynomials will

be indicated as Hj [x(n)], with j = 2, 3, ....
For N > 1, the basis functions can be obtained with the

same procedure of [22], [18], by first writing the Hermite

polynomials for x(n), x(n − 1), . . . , x(n −N + 1) and them

multiplying the polynomials of different variables in any

possible manner, taking care of avoiding repetitions. The basis

functions of orders 1, 2, 3, memory length N , and diagonal

number D are reported in Table I. The diagonal number D
is defined as the maximum time difference between the input

samples involved in each basis functions. The complete set

of basis functions of memory N can be obtained by setting

D = N − 1, but the basis functions for D ≪ N − 1 are often

sufficient to accurately model many real systems [18].

Neglecting the constant term, a WN filter of order 3,

memory N , and diagonal number D is the linear combination

of the basis functions in Table I. In the form of a filter bank

the filter is given by the following relation

ŷ(n) = h1(n) ∗ x(n) +
D
∑

i=0

h2,i(n) ∗ b2i(n) +

+
D
∑

i=0

D
∑

j=i

h3,i,j(n) ∗ b3,i,j(n) (5)

where b2,i(n) and b3,i,j(n) are the zero-lag basis functions

of 2-nd and 3-rd order. Specifically, b2,0(n) = H2[x(n)],
b2,i(n) = x(n)x(n − i) with i = 1, ..., D, b3,0,0(n) =
H3[x(n)], b3,0,j(n) = H2[x(n)]x(n − j) with j = 1, ..., D,

b3,i,i(n) = x(n)H2[x(n−i)] with i = 1, ..., D, and b3,i,j(n) =
x(n)x(n−i)x(n−j) with i = 1, ..., D−1 and j = i+1, ..., D.

h1(n) is the first order kernel, i.e., a length N sequence

collecting the coefficients of the linear terms x(n− i). h2,i(n)
for i = 0, ..., D are the diagonals of the second order kernel

and are sequences of length N − i. h3,i,j(n) for i = 0, ..., D
and j = i, ..., D are the diagonals of the third order kernel

with length N − j. The term “diagonals” follows the nam-

ing conventions of Volterra filters. In practice, the nonlinear

kernels are band matrices with matrix bandwidth D [23].

Note that the first order kernel does not coincide with the

nonlinear filter impulse response, which is

ĥ(n) = lim
A−→0

ŷ[Aδ(n)]

A
where ŷ[Aδ(n)] is the filter response to a pulse of amplitude

A. In fact, all basis functions H2k+1[x(n)] with k ≥ 1 include

a linear term that contributes to the impulse response.

The WN filters admit PPSs. Using a PPS input, the coef-

ficients of the WN filter can be efficiently estimated with the

cross-correlation method, with the first order kernel given by

h1(m) =
< ŷ(n)x(n−m) >L

< x2(n) >L

. (6)

III. RIR MEASUREMENT

Consider the scheme of the RIR measurement system in

Fig. 1. The system is composed of a power amplifier, a

loudspeaker, a room acoustic path, and a microphone. The

measurement aims at estimating the room impulse response

hR(n), which is assumed to have length M . The power

amplifier and the loudspeaker system at high volumes are

often the source of nonlinear effects. It is assumed in the

following that the system composed of the power amplifier

and loudspeaker can be modeled as a WN filter of order K,

memory N , and diagonal number D. For K = 3 the input
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x(n)

ŷ(n)

m̂(n)

h1(n) hR(n)

hT(n)

Fig. 1. The measurement system.

output relationship of this model is given in equation (5). The

microphone can be considered as a linear system, due to the

low level of the acquired signals. Its effect will be neglected

in the following or better included in the model of the power

amplifier and loudspeaker system. In these conditions, the

measurement system of Fig. 1 can be modeled as a WN filter

of order K, memory NT = N +M − 1 and diagonal number

D. For K = 3 the system has the following input-output

relationship,

m̂(n) = hR(n) ∗ ŷ(n) = hR(n) ∗ h1(n) ∗ x(n)

+

D
∑

i=0

hR(n) ∗ h2,i(n) ∗ b2i(n)

+

D
∑

i=0

D
∑

j=i

hR(n) ∗ h3,i,j(n) ∗ b3,i,j(n). (7)

Using as input of the measurement system a PPS for WN

filters of order K, memory NT, and diagonal number D, all

coefficients in (7) can be estimated with the cross-correlation

method. Actually, for RIR measurement, it suffices to estimate

the first order kernel of the model, which according to (7) is

hT = hR(n) ∗ h1(n). The first order kernel of the power

amplifier and loudspeaker system h1(n) can be measured and

characterized in an anechoic chamber using the same PPS and

the same reproduction volume.

As was proposed for linear systems [24], the RIR could be

obtained from hT using the Kirkeby algorithm,

hR(n) = IFFT

[

FFT[hT(n)] · FFT[h1(n)]
∗

FFT[h1(n)] · FFT[h1(n)]∗ + ǫ(ω)

]

, (8)

where FFT[·] and IFFT[·] are direct and inverse FFT opera-

tors, respectively, ǫ(ω) is a frequency-dependent regularization

parameter. Actually, the Kirkeby algorithm provides the RIR

hR(n) only when the loudspeaker has a uniform response at

all directions in the frequency range of interest. However,

since the amplifier and loudspeaker affect the measurement

in a known, mild manner, it is common to approximate

hR(n) with hT(n). Furthermore, since the first order kernel

h1(n) of the amplifier and loudspeaker system does not differ

much from the impulse response of the loudspeaker, the same

approximation is acceptable also in the RIR measurement

using PPSs for WN filters. For the orthogonality properties

of the PPSs, the measurements of hT(n) and hR(n) are

not affected by the nonlinear kernels of the amplifier and

loudspeaker systems, i.e., by h2,i(n) and h3,i,j(n) for all i
and j, provided a PPS of sufficient order and memory is used.

Thus, the proposed RIR measurement system is immune to

the nonlinearities of the amplifier and loudspeaker, even when

they have memory.

IV. PPSS SUITABLE FOR RIR MEASUREMENT

In this section, we discuss how a PPS xp(n) of period L for

a WN filter of order K, memory NT, diagonal number D, and

Gaussian input variance σ2
x, suitable for RIR identification,

can be developed. The PPS should be bounded by 1, i.e.,

|xp(n)| < 1 ∀n, for faithfully reproducing it with digital to

analog converters. The PPSs for WN filters developed in [19]

are not suitable for RIR measurement. Indeed, their period

increases geometrically with the memory NT of the filter, and

already for small NT is unreasonably high. In [19], L depends

geometrically on NT because the PPSs allow the estimation

of all kernels of WN filter. In RIR measurement, as shown in

Section III, only the first order kernel needs to be estimated,

relaxing the constraints imposed on the PPS.

In what follows the approach of [19] is adapted to estimate

only the first order kernel. It should be noted that the approach

for developing PPSs for WN filter is different from that used

for LN filters in [16], [17]. In particular, to develop PPSs for

RIR measurement we impose that all joint moments estimated

over a period involved in the measurement of the first order

kernel assume the ideal values of a Gaussian noise N (0, σ2
x).

Thus, the following system of nonlinear equations is imposed

< xr0
p (n)·. . .·x

rNT−1

p (n−NT+1) >L= µr0 ·. . .·µrN−1
, (9)

for all r0, . . . , rNT−1 ∈ N with r0 > 0 (for the periodicity of

the sequence), r0+. . .+rNT−1 ≤ K+1, and with xr0
p (n)·. . .·

x
rNT−1

p (n−NT+1) = xp(n−i)xv0
p (n−j)·. . .·xvD

p (n−D−j),
for some i, j ∈ [0, NT − 1] and v0 + . . .+ vD ≤ K; µr is the

r-th moment of the Gaussian process N (0, σ2
x),

µr = E[xr(n)] =

{

0 for r odd,

σr
x(r − 1)!! for r even,

(10)

with q!! = q · (q− 2) · (q− 4) · . . . · 1. It can be proved that the

number Q of nonlinear equations in (9) increases exponentially

with the order K, geometrically with the diagonal number

D, but linearly with the memory length NT. For sufficiently

large L, the system (9) is underdetermined and may have

infinite solutions in the variables xp(n). The Newton-Raphson

method has proved particularly effective for solving (9). The

method was implemented as in [25, ch. 9.7], starting from

a random distribution of xp(n) in N (0, σ2
x) , and reflecting

xp(n) in [−1,+1] every time they exceed the range to obtain a

sequence in [−1,+1], as desired. Convergence was obtained in

all simulations, provided σ2
x was sufficiently small. Indeed, the

PPS sample distribution is similar to a Gaussian and intuitively

convergence is possible only when the probability of having

samples outside [−1,+1] is sufficiently small. Solutions to

(9) were found for L = 3Q ÷ 4Q and σ2
x ≤ 1/10. Since the

Newton-Raphson method has a computational complexity that

increases with Q3, as discussed in [26] and [18], it is very

useful to impose some structural conditions to the PPS. For

example. the following conditions allow to almost halve the

number of equations and variables:
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TABLE II
PPSS FOR RIR ESTIMATION (NT RIR LENGTH, K WN FILTER ORDER,

D DIAGONAL NUMBER, L PPS PERIOD, S MEANS SYMMETRY,
O ODDNESS, O-P ODDNESS FROM 1 TO P)

Seq. NT K D L log2(L) exploits

1 8192 3 0 131060 17 S,O,O-1
2 8192 3 1 262132 18 S,O,O-1
3 8192 3 2 524276 19 S,O,O-1
4 8192 3 3 1048560 20 S,O,O-4
5 8192 3 4 2228208 21 O,O-4
6 8192 5 0 262132 18 S,O,O-1
7 8192 5 1 1114104 20 O,O-1,O-2
8 16384 3 0 262140 18 O,O-1
9 16384 3 1 524276 19 S,O,O-1
10 16384 3 2 1048564 20 S,O,O-1
11 16384 3 3 2097136 21 S,O,O-4
12 16384 5 0 524276 19 S,O,O-1
13 32768 3 2 2097136 21 S,O,O-4
14 65536 3 2 8388576 23 S,O,O-8

– Symmetry: for any N -tuple of samples a1, a2, . . . , aN , there

is also the reversed one aN , aN−1, . . . , a1. Thus, for every

couple of symmetric joint moments (e.g., < x(n)x2(n−1) >L

and < x2(n)x(n− 1) >L) only one is needed.

– Oddness: for any N -tuple a1, a2, . . . , aN , there is also the

opposite one −a1,−a2, . . . ,−aN . Consequently, all odd joint

moments are a priori zero.

– Oddness-1: For any N -tuple a1, a2, . . . , aN , there is also

the one obtained by alternatively negating the samples

a1,−a2, a3, . . . ,−aN . Consequently, all odd-1 joint moments

are a priori zero.

Odd-1 are all those joint moments that change sign by

alternatively negating the samples, as < x(n)x(n − 1) >L

[19]. Oddness-2, oddness-4, ..., conditions could be similarly

defined and used to halve the number of equations.

PPSs suitable for RIR measurement can be downloaded

from the website [27]. Table II provides the characteristics

of the PPSs currently available.

V. EXPERIMENTAL RESULTS

In order to test the robustness towards nonlinearities of the

novel sequences, we have considered an emulated scenario.

PPSs for WN and LN filters, MLSs and ESs having different

periods (or lengths) L have been applied to a real device, a

Behringer MIC 100 vacuum tube preamplifier, at a sampling

frequency of 44.1 kHz. The preamplifier emulates the non-

linearities introduced by a power amplifier or a loudspeaker.

It has a potentiometer that allows to control the amount of

nonlinear distortion introduced. Ten different settings have

been considered and Fig. 2 shows the second, third, and total

harmonic distortion in percent on a 1 kHz tone at the maximum

amplitude of the sequences. The same peak amplitude has been

considered for all sequences. Clearly, many of the harmonic

distortions of Fig. 2 are larger than those expected in a

measurement system, but they have been selected so large to

stress the robustness of the proposed approach. The recorded

output of the preamplifier has been convolved with a known

RIR and a white Gaussian noise has been added to the output

to have a signal to noise ratio of 40 dB. The known RIR

allows us to measure the log-spectral distance (LSD) [28], [29]

2 4 6 8 10
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10

H
ar

m
o

n
ic

 D
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rt
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n

 %

Second

Third

Total

Fig. 2. Seconds, third, and total harmonic distortion.

between the measured RIR and its actual value. The LSD is

defined in the band B = [k1
FS

T
, k2

FS

T
], with FS the sampling

frequency and T the number of the samples of the discrete

Fourier Transform (DFT), as follows:

LSD =

√

√

√

√

1

k2 − k1 + 1

k2
∑

k=k1

[

10 log10
|HR(k)|2

|ĤR(k)|2

]2

, (11)

where |HR(k)| is the actual room magnitude response and

|ĤR(k)| is the measured room magnitude response.

For the measurement with WN PPSs, the first 5 sequences of

Tab. II have been used. Sequences with identical characteristics

have been considered also for LN filters. For MLS and ES,

sequences with order log2(L) ranging from 15 to 21 have been

applied. None of the PPSs have order 15 or 16, but these orders

have still been used for the MLSs and the ESs because they

allow the identification of a RIR of 8 192 samples.

Fig. 3 shows the LSD in dB of the measured RIR without

any compensation of the pre-amplifier, computed in the band

[100, 18000] Hz. The MLS is clearly affected by the nonlinear-

ity, while the ES provides robust results for order greater than

16. The PPSs for LN and WN filters provide similar robust

results, with the WN filter showing slightly better results at

the highest setting, due to its lower signal power. The same

experiment was repeated for an equal power of the LN and

WN PPSs and also for larger nonlinear distortions. Similar

results were obtained: for the largest distortions, the LSD of

the WN PPSs slightly increased compared with Fig. 3.(a), but

remained always lower than that of the LN PPSs. The result is

consistent with fact that the PPS for a WN filter has an almost

Gaussian distribution, while that for an LN filter has an almost

uniform distribution. The main advantage of WN PPSs over

LN PPSs is that for equal power they excite less the highest

amplitudes and are less affected by nonlinear distortions.

Fig. 4 shows the LSD in dB of the measured RIR when

the pre-amplifier is compensated with the Kirkeby algorithm

in (8). The LSD improves in all the methods, particularly in

PPSs for LN and WN filters and in MLSs for order larger

than 17. On the contrary, the improvement of LSD, while still

relevant, is significantly worse for the ES.

VI. CONCLUSIONS

The paper discusses a novel technique for RIR measure-

ment based on PPSs for WN filters. The technique is robust

towards the nonlinearities affecting the power amplifier or
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Fig. 3. LSD between measured and real RIRs without pre-amplifier compensation: (a) PPSs for WN filter, (b) PPSs for LN filter, (c) MLSs, (d) ESs.
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Fig. 4. LSD between measured and real RIRs with pre-amplifier compensation: (a) PPSs for WN filter, (b) PPSs for LN filter, (c) MLSs, (d) ESs.

the loudspeaker of the measurement systems. It provides an

improvement in comparison with the techniques based on PPSs

for LN filters, since the almost Gaussian distribution of the

novel PPSs less excites the nonlinearities of the measurement

system. PPSs for WN filters suitable for RIR measurement

have also been developed within the paper. The experimental

results, employing signals affected by a real nonlinear device,

highlight the robustness towards nonlinearities of the proposed

RIR measurement technique.
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