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Abstract—This paper focuses on a novel lossless compression
algorithm which can be efficiently used for compression of
electrocardiogram (ECG) signals. The proposed algorithm has
low memory requirements and relies on a simple and efficient
encoding scheme which can be implemented with elementary
counting operations. Thus it can be easily implemented even in
resource constrained microcontrollers as those commonly used in
several low-cost ECG monitoring systems. Despite its simplicity,
simulation results carried out on real-world ECG signals show
that the proposed algorithm achieves higher compression ratios as
even compared to other more complex state-of-the-art solutions.

I. INTRODUCTION

Nowadays there are an increasing number of people with

chronic cardiovascular conditions and related diseases [1]. As

a consequence an escalating level of supervision and medical

management systems is necessary.

Wireless Sensor Networks (WSNs) and, more recently,

Internet of Things (IoT) platforms have been proposed as a

solution to this problem and are considered the key enablers

for future health monitoring systems [2] [3]. Usually it is

assumed that this kind of devices have enough processing

and storage resources to run powerful and complex algorithms

[4] and to store hundreds of megabytes of data [5]. However,

in practice, resource constrained microcontrollers with a few

kilobytes of memory are used in IoT platforms and WSNs [6]

and are preferred with the aim to achieve low cost monitoring

systems [7] [8]. In this context, compression techniques can be

used with the aim of reducing storage resources and increasing

lifetime of battery-powered devices [9].

Compression algorithms can be broadly classified in lossy

and lossless compression algorithms [10], [11]. In both cases

the first metric considered to evaluate their performance is the

Compression Ratio (CR), here defined as the ratio between the

number of bits before and after compression. As general rule,

lossy compression algorithms allow to achieve much higher

compression ratios, however lossless algorithms are preferred

in several biomedical applications to ensure that waveform

details are not lost causing errors in medical diagnosis [12].

Moreover, in most countries, medical regulatory standards do

not endorse lossy compression techniques [13] [14] [15].

Although several lossless compression algorithms exist,

most of them are not suitable when only limited storage and

computational resources are available [16] [17]. Therefore, in

the case of resource constrained devices, the tradeoff between

computational complexity and the achievable compression

ratio must be further considered.

In this paper we present a novel lossless compression

algorithm based on a simple and efficient encoding scheme and

which can be easily implemented even in resource constrained

microcontrollers.

The proposed compression algorithm has been tested with

real-world electrocardiogram (ECG) signals obtained by the

MIT-BIH Arrhythmia Database [18] which contains 48 two-

channel ambulatory ECG recordings digitized at 360 samples-

per-second with 11-bit resolution.

Simulation results reported in this paper show that the

proposed algorithm achieves higher compression ratios as even

compared to state-of-the-art lossless compression algorithms

based on more complex predictors and encoding schemes.

The rest of this paper is organized as follows: in Sec. II

related works are discussed; in Sec. III the proposed algo-

rithm is introduced; in Sec. IV performance and complexity

of the proposed algorithm and other state-of-the-art lossless

compression schemes are compared. Finally, conclusions and

future works are drawn in Sec. V.

II. RELATED WORKS

The basic idea behind several ECG lossless compression

algorithms is to exploit temporal correlation to reduce redun-

dancy. Accordingly, many compression algorithms operate in

two phases:

• in the first phase, a predictor is used; basically, in

this phase a few previous samples are used to obtain

an accurate estimate x̂i of the actual sample xi. The

most simple predictor is the zero order predictor, i.e.

x̂i = xi−1, but several other techniques exist ranging

from higher order predictors and interpolators [19] [20] to

more computationally intensive solutions based on neural

networks [21] or fuzzy logic [22].

• In the second phase, the difference ri = xi − x̂i, hence-

forward named residue, is encoded using a codebook

specifically optimized to achieve a mean codeword length

near the Shannon’s entropy [23]. Variable-length codes

(VLC) such as Huffman codes [24] or Golomb codes

[25] can be used in this phase.

Several compression algorithms that exploit the above ap-

proach have been proposed in literature, some of which are

reviewed below.
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In [26] the authors proposed a lossless ECG compressor

based on an adaptive predictor and a two-stage Huffman

encoder. Basically, the adaptive scheme selects the best pre-

dictor among a first-order and a second-order linear predictor;

residues are then encoded with a two-steps Huffman encoder

implemented using two look-up tables (LUTs). Implementing

the algorithm in microcontrollers is feasible and in the case of

the MIT-BIH Dataset the achieved average compression ratio

is 2.43. However, as observed in [27], the authors considered

that residues obtained from 11-bit samples can be always

represented with 9 bits; instead, at least 13 bits must be used

for a true lossless implementation based on a second-order

predictor.

In [27] authors use a first-order predictor and a dynamic data

packaging scheme. The packaging scheme basically removes

unnecessary zeros and select the best frame format that can ac-

commodate a set of residues. The proposed solution is simple

and its implementation on microcontrollers is straightforward;

however, in comparison to [26], the achieved compression ratio

is lower (2.25).

In [28] an adaptive predictor based on a fuzzy decision

controller has been proposed. A set of three fuzzy rules has

been used to select the best predictor among a set of height

different linear predictors. Then a two-stage entropy encoder

similar to that proposed in [26] is used to encode the residues.

In comparison to the above mentioned solutions, the authors

obtained a higher compression ratio (i.e. 2.53); however it

should be considered that the entropy encoder and the set of

fuzzy rules have been specifically tuned with the same dataset

used to evaluate the compression ratio.

In [29] authors proposed a solution based on an adaptive

predictor and a variable length encoding scheme. Basically,

residues within the range −7 < ri ≤ 8 are encoded with

4 bits each and, in the case of larger residues, 12 bits are

used to directly output the input data. The authors stated that,

in the case of the MIT-BIH dataset, the proposed scheme is

able to obtain an average compression ratio of 2.67. However,

the adaptive predictor is based on a threshold value which has

been specifically tuned for the MIT-BIH dataset. Moreover, the

above compression ratio has been evaluated with an incorrect

resolution of 12 bits-per-sample. Considering that compression

ratios increase with the resolution of input data and that

actual resolution of the MIT-BIH samples is 11 bits [18], their

effective compression ratio is 2.67 · 11

12
≈ 2.45. We argue that

this mistake was due to the fact that MIT-BIH recordings are

stored in different formats; the most common is the 212 format

where, for sake of efficiency, 11-bit samples are stored as 2

samples per 3 bytes (i.e. 12 bits per sample).

In [30] authors improved the algorithm proposed in [27] by

combining a fourth order adaptive predictor, a Huffman code

and a modified dynamic data packaging scheme. In the case of

the MIT-BIH Dataset they achieved an average compression

ratio of 2.38.

In [22] authors proposed a novel prediction method based on

fuzzy set decision, a particle swarm optimiser (PSO) and a six-

region Huffman encoder. In the case of the MIT-BIH Dataset

the achieved average compression ratio is 2.84. However,

this impressive compression ratio has been obtained with a

complex solution which relies on an off-line optimization pro-

cedure. In particular, 64 threshold values have been specifically

tuned for the MIT-BIH dataset using a training scheme based

on PSO that is too complex to be implemented in low-cost

microcontrollers.

In [31] authors proposed a solution based on an adaptive

linear predictor and a small single stage Huffman encoder.

In the proposed solution, infrequent high value residues are

divided in two parts which are encoded in two clock cycles

using the same Huffman dictionary. The authors stated that in

comparison to [26] a 2.1X preformance improvement can be

achieved. However, the proposed solution is far from being

flawless. Firstly, their implementation assumes that residues

can be always expressed with two decimal digits (in general

this constrain is not verified and it is worth noting that the

authors tested their implementation only on ten signals of the

MIT-BIH dataset). Secondly, the 2.1X improvement has been

achieved without considering that some bits are necessary to

encode also the type of the used predictor; when this precode

is considered the actual compression ratio is less than 2.2 (as

can be observed from Fig.6 of their paper).

Considering the aforementioned works it is possibile to state

that the design of a low complex lossless compression scheme

with a compression ratio higher than 2.67 is a challenging task.

In particular, at the best of our knowledge, a compression

ratio larger than 2.67 has been obtained only with complex

predictors that cannot be easily implemented with low cost

microcontrollers.

In the next Sections we present a new lossless compression

algorithm ables to achieve the above compression ratio using

a simple encoding scheme and a zero order predictor.

III. PROPOSED ALGORITHM

The proposed algorithm is based on an efficient encoding

scheme for binary sequences recently proposed in [32] and

named RAKE. In [32] the authors showed that in the case

of sparse sequences, i.e. sequence with a few non-zero bits,

the RAKE algorithm is able to outperform other encoding

techniques such as the Run-Length Encoding (RLE) [11].

For the sake of readability, we report a short description of

the RAKE algorithm in the next subsection.

A. RAKE algorithm

The RAKE algorithm is able to encode positions of non-

zero bits in an efficient manner. We can explain the RAKE

algorithm by considering a sliding window of length T that

moves forward over the original (uncompressed) binary se-

quence (see Figure 1). The window catches T bits at a time and

an output codeword is generated accordingly to the following

two possible cases:

1) There are no set bits within the window (i.e. all T bits

are zeros). In this case a single zero bit codeword is

used and the sliding window is moved forward by T

positions;
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Fig. 1. Example of RAKE compression algorithm (T = 4).

2) At least a set bit is found. In this case a codeword of

1 + ⌈log2 T ⌉ bits is generated where the first bit is set

to 1 and the other ⌈log2 T ⌉ bits are used to encode the

position p ∈ [0, ..., T −1] of the first non-zero bit within

the window. Then the window moves forward by p+ 1
positions (i.e. immediately after the set bit that has been

already encoded).

The above operations are repeated until the sliding window

reaches the end of the sequence to be compressed. It is

worth noting that only counting operations are needed for

implementing the above procedure.

In Figure 1 a simple example is reported showing how

the sequence Sin = [010000001010000] of n = 15 bits is

compressed by the RAKE algorithm to produce a compressed

sequence Cout = RAKE(Sin) = [10101101010] of 11 bits.

Accordingly to [32], the following expression provides the

optimal value of T for a binary sequence of length n with k

non-zero bits:

T = (
n

k
− 1) · ln(2) (1)

Finally, note that the value of T is necessary to reconstruct

the original sequence, thus a few bits must be added at the

beginning of the compressed sequence. In [32] authors showed

that T can be represented with only O(log2(log2(T ))) bits by

constraining the value of T to be a power of two. In this case

the RAKE algorithm has a negligible overhead.

B. Using the RAKE algorithm for ECG signals

The RAKE algorithm can be used in combination with every

transformation or pre-processing technique able to obtain a

sparse binary sequence from the original data set. In particular,

in [32] the authors proposed to represent residues using a

dictionary based on a one-hot encoding scheme.

In this paper we apply the RAKE in a different manner by

avoiding the use of dictionaries so that only the compressed

and the incoming sequences have to be stored.

Henceforward we consider that ECG samples xi are quan-

tized and represented with w bits (i.e. w = 11 in the case of

the MIT-BIH dataset) and that residues are obtained with a

simple zero order predictor, i.e. ri = xi − xi−1.

We introduce the following transformation, henceforward

referred to as zig-zag encoding [33]:

r′i = 2 · |ri| − (ri < 0) (2)
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Fig. 2. Zig-zag encoded residues and related matrix A = [L,M,R]

Zig-zag representation is similar to sign-magnitude repre-

sentation but the sign bit of ri is placed at the end of the binary

string representing r′i and, in the case of negative numbers (i.e.

ri < 0), the sign is used to reduce the magnitude of r′i. It is

possible to prove that the zig-zag transformation is invertible

(i.e. ri can be obtained from r′i).

We observe that at most w+1 bits are necessary to represent

r′i. As a consequence, a block of B zig-zag encoded residues,

{r′i : i ∈ [1, ..., B]}, can be represented as a matrix A of

B× (w+1) bits. Here we assume that B and w are fixed and

known values.

The basic idea of the proposed algorithm is to logically

decompose the matrix A into three parts (i.e. three subma-

trices) and then apply different compression schemes to each

submatrix. More precisely, as shown in Fig.2, the matrix A is

decomposed as A = [L,M,R] where:

• L is a B × l matrix, representing the Left part of A and

composed by l all-zero columns;

• M is a B×m matrix, representing the Middle part of A

and composed by m consecutive columns with at most

0.4 ·B non-zero bits for each column;

• R is a B×r matrix, representing the Right part of A and

composed by the remaining r columns of A.

Let us observe that in some cases the above mentioned

submatrix can be null (i.e. l,m and r can be zero) but their

dimensions are always related by l +m+ r = w + 1.

Note that the boundaries of the above matrices (and there-

fore the values of l,m and r) can be obtained by reading the

matrix A column-by-column and counting the number of non-

zero bits in each column. More precisely, let Aj be the j-th

column of A and nnz(Aj) a function able to count the number

of non-zero bits in the column vector Aj , than it is possible

to obtain l,m and r with the following procedure:

• initializing the variables l = 0,m = 0, j = 1
• while ((nnz(Aj) == 0) && (j ≤ w + 1)){l++; j++;}
• while ((nnz(Aj) < 0.4B)&&(j ≤ w + 1)){m++;j++;}
• r = w + 1− l −m

Finally note that no memory is necessary to store the above

submatrices, in fact the above description is an alternative

logical representation of the array A already used to store

the encoded residues.
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The above submatrices can be compressed as follows:

• L is an all-zeros matrix therefore dimensions of L are

sufficient for its reconstuction; furthermore, we recall our

assumption that B is a fixed and known value thus L can

be compressed with ⌈log2(w + 2)⌉ bits, i.e. the number

of bits necessary to represent l.

• M can be compressed using the RAKE algorithm; more

precisely, RAKE is applied to each column of M by

obtaining m compressed strings.

• R is not actually compressed but its elements are simply

read as B words of r bits each, i.e. Ri with i ∈ [1, ..., B].

Finally, compressed strings reprenting the above matrices

are concatenated to obtain the compressed block

Cout = [l,m,RAKE(Al+1), ..., RAKE(Al+m), R1, ..., RB ].

Note that from a computational point of view, we need only

to obtain the values of l and m and then apply the RAKE

algorithm to the columns of A belonging to M . Therefore

only counting and simple arithmetic operations are needed for

implementing the proposed algorithm.

The algorithm can be summarized as shown in Figure 3.
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Fig. 3. Flowchart of the proposed algorithm

Finally, it is worth noting that to reconstruct the original

ECG signal the first sample, i.e. x0, is also necessary (this

increases the overhead by w bits).

IV. COMPARISON RESULTS

In this section we compare the proposed compression al-

gorithm with other state-of-the-art lossless techniques specifi-

cally devised for ECG signals. More precisely, the following

metrics have been considered for comparison:

• Compression Ratio (CR) defined as the ratio between the

number of bits before and after compression;

• Complexity: in particular we classified the algorithms into

Simple, Feasible and Unfeasible. Simple algorithms are

those based on linear predictors and encoding techniques

which can be easily integrated in microcontrollers; Fea-

sible algorithms can be also implemented in microcon-

trollers but they need more storage and computational

resources; finally, Unfeasible algorithms are those with

too high complexity to be integrated with low-cost mi-

crocontrollers, due to either complex predictors or huge

memory requirements.

Complexity and the average compression ratio of the al-

gorithms reviewed in Sec. II and the proposed algorithm are

reported in Tab.I. In the case of the proposed algorithm, the

full set of samples has been divided into 13000 blocks of

B = 50 words each and for each block the devised algorithm

has been applied.

As it is possible to observe in Tab.I, in camparison to

other Simple solutions the proposed algorithm improves the

compression ratio by at least 9%. Moreover, the CR of the

proposed algorithm is higher respect to all the other solutions

with the exception of [22]. However, as observed in Sec. II,

the compression scheme proposed in [22] relies on a 6-stage

Huffman encoder and a fuzzy predictor tuned using an off-line

training scheme, thus it is too complex to be implemented in

low-cost microcontrollers. Finally, it should be considered that

differently from [29], [28] and [22], in the RAKE algorithm

there are not parameters that must be tuned.

It is worth noting that a block size of B = 50 is compatible

with the maximum payload length specified by several wireless

communication protocols commonly used for IoT and WSN

devices (i.e. IEEE802.15.4, ZigBee and BLE, to name just a

few). Therefore a block can be processed by a microcontroller

inside a wearable wireless monitoring system and sent to a

second remote device that acts as a gateway and which can

offer more storage resources. In this case only B = 50 words

at a time have to be stored in the microcontroller and this

number of words can be easily handled.

The proposed algorithm introduces a latency due to the fact

that it operates on blocks of data. However, accordingly to the

IEEE11073 standard [34], the maximum latency is lower than

500ms. In fact, considering a sampling frequency of 360Hz,

about 50/360≈140ms are needed to acquire a full block and

a few milliseconds are sufficient to process and send a block,

considering a 4MHz microcontroller and a transmission rate

of 250kbps. Therefore the overall expected latency is in the

order of 150ms.

Finally, the reader could observe that when a block is lost

than all successive samples cannot be reconstructed. However,

this observation is true also for the other compression schemes

discussed in this paper when a residue is lost or corrupted.

A possible solution is to use forward error correction codes

which improve reliability but reduce compression efficiency.

For the sake of space we cannot further discuss this aspect.
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Solution Chen [26] Lian [27] Luo [28] Li [29] Deepu [30] Chen [22] Garg [31] Proposed

Actual CR 2.43 2.25 2.53 2.45 2.38 2.84 2.2 2.67

Predictor Adaptive First order Fuzzy Adaptive Adaptive Fuzzy/PSO Adaptive Zero order

Encoder
Huffman

(2-st.)
Dynamic

Pack.
Huffman

(2-st.)
VLC (1-st.)

Huffman (1-st.) +
Dynamic Pack.

Huffman
(6-st.)

Huffman
(1-st.)

RAKE

Complexity Simple Simple Feasible Simple Simple Unfeasible Simple Simple

TABLE I
COMPARISON OF LOSSLESS COMPRESSION ALGORITHMS FOR ECG SIGNALS

V. CONCLUSION AND FUTURE WORKS

In this paper we have presented a simple and effective

lossless compression algorithm for ECG signals. Using only

a simple zero order predictor and counting operations, the

algorithm is able to outperform several existing solutions.

Moreover, considering its inherent low complexity and mem-

ory requirement, it is well suited for low cost ECG monitoring

systems based on resource constrained IoT devices.

As future works we will investigate performance of the

proposed algorithm with other types of biomedical signals.
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