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Abstract— Orbital radar sounders are an effective tool to in-
vestigate the interior of planetary bodies. Typically, the sounding
signal lies in the High Frequency (HF) or Very High Frequency
(VHF) band, allowing a good ground penetration but a limited
range resolution. Moreover, Electromagnetic Interference (EMI)
may affect the system, increasing the noise in the radar products.
In this paper, we propose methods to enhance the resolution
and to suppress the EMI, exploiting a linear prediction based
approach. Using simulated data, we investigate the methods’
performance and the parameter settings. Finally, we apply the
methods to data of the Mars Advanced Radar for Subsurface
and Ionosphere Sounding (MARSIS).

I. INTRODUCTION

Radar sounding is an attractive technique for exploring

the interior of planetary bodies, allowing the investigation of

the subsurface structures. Radars with sounding capabilities

have been included in the payload of several missions, like

the Apollo Lunar Sounder Experiment (ALSE) on board the

Apollo Mission [1], the Mars Advanced Radar for Subsurface

and Ionosphere Sounding (MARSIS) on board the European

Space Agencys (ESA) orbiter Mars Express [2], the Shallow

Radar (SHARAD) mounted on the National Aeronautics and

Space Administrations (NASA) orbiter Mars Reconnaissance

Orbiter (MRO) [3] and the Lunar Radar Sounder of the

Japanese orbiter Kayuga [4]. Radar sounders are also included

in the payload of future missions, like the Radar for Icy Moons

Exploration (RIME) [5] and the Europa CLIPPER mission [6].

In order to perform subsurface investigation, radar sounders

usually exploit wideband signals in the High-Frequency (HF)

or Very High-Frequency (VHF) bands. These bands are vulner-

able to electromagnetic interferences (EMI) which can reduce

the sensitivity of the instrument and the quality of radar

products. Furthermore, the instruments operating at HF have

a limited resolution, since the latter is dictated by the signal

bandwidth which, in turn, is limited by the need to keep low

the fractional bandwidth.

In this paper we tackle the above mentioned problems and

discuss methods to suppress the EMI and to increase the

range resolution. The methods are based on extrapolation and

interpolation of the signal spectrum, accomplished by means

of linear prediction techniques. This approach is not new and

has been exploited earlier. Indeed, a seminal work is [7],

where bandwidth extrapolation (BWE) was proposed in order

to improve the resolution of an imaging radar. Later, the BWE

was applied to wideband radars [8]. Moreover, in [9] linear

prediction is exploited in order to improve the resolution of a

Synthetic Aperture Radar (SAR). Finally, similar techniques

have been successfully applied to the Cassini Radar [10].

However, to the best of our knowledge, this technique has

never been applied to radar sounders neither to the EMI

suppression problem. As an additional contribution, we discuss

a specific example, illustrating the application of the methods

to the MARSIS data. In a companion paper, the application

to SHARAD data has been considered [11]. Moreover, an

alternative super-resolution approach for MARSIS is presented

in [12].

The paper is organized as follows. In Section II we describe

the radar sounder model. In Section III we briefly review

linear prediction. In Section IV we present the resolution

enhancement and the EMI suppression methods. In Section

V we discuss the application to MARSIS data and in Section

VI we give the conclusions.

II. RADAR SOUNDING

A planetary radar sounder is a HF or VHF radar onboard

a spacecraft orbiting the planet. The sounder transmits a se-

quence of pulses (chirps) towards the planet. When a pulse hits

a medium discontinuity, it is partially reflected and refracted.

Some energy passes the discontinuity and is reflected and

refracted by successive discontinuities. The sounder receives

the reflected pulses and, by means of proper processing,

reconstructs the layer structure of the explored area.

After transmitting a chirp p(t), having bandwidth B cen-

tered on a carrier frequency fc, the sounder switches to the

receive mode and collects the return signal for a time Tf ,

which is assumed to be sufficient to collect all the echoes of

interest. This signal is sampled and fed to a filter matched

to the chirp, usually realized in the frequency domain. This

processing is known as pulse compression because every

copy of p(t) entering the filter is transformed into a shorter,

compressed pulse, which is ideally sinc shaped, with a −4
dB main lobe having a duration T = 1/B. In turn, the main

lobe sets the instrument’s range resolution, which is inversely

proportional to the chirp bandwidth.

The signal at the output of the matched filter is called a

data frame. The data frames corresponding to the various

transmitted pulses are stacked into an array which is known

as a radargram, yielding information about the layer structure

for a wide swath of terrain. Typically the frame is weighted in

the frequency domain with a proper window (e.g. Hamming,

Hanning, Bartlet) in order to reduce the side-lobes of the
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Fig. 1. A Hanning weighted MARSIS spectrum: the EMI peaks are clearly
visible.

compressed pulse at the expense of a widening of the main

lobe. Moreover, Doppler processing can be applied to the

radargram in order to reduce the clutter [13].

The received signal is affected by noise due to several

sources. First, there is additive noise due to the readout

electronics and to the galactic noise. This noise can be mod-

eled as a zero-mean, white stochastic process, with Gaussian

distribution. A second noise source is the electro-magnetic

interference (EMI) due to the coupling of the antenna with

other subsystems of the instrument, like the solar panel, the

clocks and so on. The EMI can be modeled as a set of

sinusoidal signals superimposed to the received signal. In the

signal spectrum, the EMI can be seen as a set of sharp peaks,

centered at the sinusoids frequencies, see Figure 1.

It is convenient to introduce a simplified1 model for the low-

pass equivalent compressed signal. Specifically, the signal, for

|t| <
Tf

2
, can be written as

r(t) =

L
∑

i=1

αisinc

(

t− τi
T

)

+

I
∑

i=1

βie
2πfitrect

(

t

Tf

)

+ n(t)

(1)

where L is the number of layers, αi and τi are the complex

amplitude and the delay of the return pulse from the i-th
layer, I is the number of EMI signals, βi and fi are the

complex amplitude and frequency of the i-th EMI and n(t)
is white noise, with variance σ2

n. Moreover, we define a

Signal to Noise Ratio (SNR) as the return power from the

strongest layer (which is typically the surface) to the noise

variance, namely SNR = maxi(|ai|
2)/σ2

n. Finally, by taking

the Fourier Transform (FT) of the latter expression and by

neglecting some border effects, we obtain an expression for

the spectrum of the compressed frame which, for |f | < B
2

, is

R(f) =

L
∑

i=1

αie
2πτif rect

(

f

B

)

+

I
∑

i=1

βisinc

(

f − fi
Bf

)

+N(f)

(2)

where Bf = 1/Tf is the inverse of the frame duration.

III. LINEAR PREDICTION

Given an N samples data sequence x[i] for i = 1, ..., N ,

linear prediction considers the problem of approximating

1A realistic model shall include additional effects, like inter-layer reflec-
tions, clutter and non flat noise.

a sample as a linear combination the preceding (past) M
samples. The coefficients to be used in the combination are

denoted by ak for k = 1, ...,M and are called the (forward)

prediction coefficients. In order to determine a suitable set of

prediction coefficients, we first write the linear combination

explicitly as

xf [i] =

M
∑

k=1

akx[i− k] i = M + 1, ...., N (3)

where xf [i] is the (forward) predicted sequence, representing

the approximation of the i-th sample obtained by combining

the preceding M samples. Next, we introduce the prediction

error (for i = M + 1, ...., N ), given by

ef [i] = x[i]− xf [i] = x[i]−
M
∑

k=1

akx[i− k],

representing the difference between the predicted and the

actual values. Finally, the coefficients are computed by mini-

mizing the error energy, given by

Ef =

N
∑

i=M+1

|ef [i]|2,

which involves the solution of a linear system [14]. The latter

way of computing the coefficients is known as the Covariance

(COV) method.

Once the coefficients have been computed, they can be used

to predict future samples of the sequence, by using Equation

(3) with i > N . However, for i > N + 1 the right hand

side of the Equation cannot be computed, because it involves

samples of x[i] for i > N , which are not known. This problem

is circumvented by using xf [i] instead of x[i] for i > N , i.e.

by using the predicted samples instead of the original samples.

In this way, the predicted sequence xf [i] becomes the output

of an Auto-Regressive (AR) filter and can be produced up to

any desired length.

An entirely similar approach can be used in order to

predict a sample as a linear combination the following (future)

M samples, which is known as a backward prediction. In

particular, we write the backward predicted sequence as

xb[i] =

M
∑

k=1

bkx[i+ k] i = 1, ...., N −M

where bk for k = 1, ...,M are the backward prediction

coefficients. Next, we introduce a backward prediction error

(for i = 1, ...., N −M ), given by

eb[i] = x[i]− xb[i] = x[i]−

M
∑

k=1

bkx[i+ k].

Finally, the coefficients are computed by minimizing the error

energy, given by

Eb =

N−M
∑

i=1

|eb[i]|2.
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Interestingly, when the data sequence is the sum of L
complex sinusoidal signals, it can be exactly predicted, either

backward or forward, using M = 2L coefficients. This is

because a sample of a sinusoidal signal can be exactly obtained

as the linear combination of two past or future samples,

see [14]. Moreover, the backward coefficients are simply the

complex conjugate of the forward ones, i.e. bi = a∗i . The latter

facts are important for our development. Indeed, Equation 2

shows that the received spectrum is a sum of sinusoidal signals

plus EMI and noise. Due to the presence of the noise, we

cannot achieve a perfect prediction. However, when the SNR

is high, we expect the prediction to be good. As a second

point, since bi = a∗i , both Ef and Eb depend on the ak and we

can compute these coefficients by minimizing the total error

E = Ef + Eb. The latter method is known as the Modified

Covariance (MCOV) and is more robust than the COV method

[14].

A minor problem with the MCOV method is that the AR

filter used to produce the predicted sequence is not granted to

be stable, which is undesirable. This problem is circumvented

by an alternative way of computing the coefficients, known

as the Burg method [14]. In this method, the coefficients are

still computed by minimizing the error E, but are subject to

an additional constraint which grants a stable filter. As an

additional merit, the minimization can be performed using

the Levinson-Durbin recursion, making the Burg method more

efficient than the MCOV method. As a drawback, when the

sequence is a sum of sinusoids, the Burg method does not

produce the coefficients realizing the exact prediction.

IV. RESOLUTION ENHANCEMENT AND EMI SUPPRESSION

Since the spectrum of Equation (2) is the sum of a set of

complex sinusoids plus noise, linear prediction can be used

in the frequency domain in order to reliably extrapolate or

interpolate the spectrum. This fact is exploited in this Section

in order to derive both a super-resolution method and an EMI

suppression method.

A. EMI suppression

Consider the received signal of Equation (1). This signal is

sampled by the receiver, with a sampling frequency fs > B
and a sampling interval Ts = 1/fs. Assuming that Tf is a

multiple of Ts, a sequence of N = Tf/Ts samples is produced.

We denote the sampled sequence by r[n] for n = 1, ..., N .

Moreover, by taking the Discrete Fourier Transform (DFT) of

r[n], a sampled version of the signal spectrum of Equation (2)

is obtained, denoted by R[k] for k = 1, ..., N . As seen from

the equation, when the signal is affected by EMI, the spectrum

has sinc shaped peaks, centered at the EMI frequencies. The

width of the peaks depends on the ratio of the sampling

frequency to the system bandwidth and can be approximated

as an integer W > fs/B. In order to suppress the EMI, we

use the following steps

1. Compute M prediction coefficients from the spectrum.

2. Detect the EMI and mark W samples around each peak.

3. Produce backward and forward predictions for the marked

samples.

4. Replace the marked samples with the average of the two

predictions.

The method is simple and intuitive. It has a single parameter,

namely the prediction order M , which can be set by using

simulations. As a comment, note that in the second step we

need to detect the EMI: this task is not difficult, since the

EMI peaks are normally much higher than the spectrum level,

and can be performed using an adaptive threshold detection.

A deeper discussion of this point is outside the scope of the

paper but can be found in [11], [15].

B. Super-resolution

Linear prediction can be used to enhance range resolution

too. Indeed, from Equation (2), we see that the compressed

signal spectrum is a sum of complex sinusoids spanning the

system’s bandwidth B. Then, we can use linear prediction in

order to extrapolate the sinusoids beyond the sounder’s band-

width, thereby granting to the system an artificial bandwidth

expansion that will sharpen the pulse when the spectrum is

transformed back in the time domain. Specifically, we can

perform the following steps:

1. Compute M prediction coefficients using the spectrum.

2. Extrapolate K samples to the right (past the N -th sample)

by using forward prediction.

3. Extrapolate K samples to the left (before the first sample)

by using backward prediction.

Using the latter steps, the effective bandwidth is increased

by a factor Be = (2K + N)/N , which will be called the

bandwidth expansion factor (BEF). In the time domain, the

main lobe of the sinc pulses is narrowed by the same factor.

Again the method is simple and intuitive. It has two main

parameters, namely the number of coefficients M and the BEF.

Suitable settings for these parameters can be investigated by

means of simulations.

C. Experiments using simulated data

In order to investigate the performance we carried out

experiments using simulated data. In the following we present

an example aimed at studying the performance of the super-

resolution method when BEF = 3 and M = N/3. We assume

N = 1800, B = 10 MHz and two layers with a separation of

150 m and complex amplitudes α1 = 1 and α2 = 0.5, which

are parameters adequate for a SHARAD frame.

As a first step, we produce an ideal, high resolution spec-

trum, denoted by R̂k and having N̂ = 3N samples. The

spectrum is produced using the discrete version of Equation (2)

with two layers, no EMI and no noise. From this spectrum, we

extract the N central samples and add white noise according

to a given SNR. The resulting sequence is denoted by R[k]
and is regarded as the spectrum seen by the sounder. To this

spectrum, we apply the super-resolution method and extrap-

olate it by using K = N (i.e. BEF = 3) and M = N/3.

The resulting super-resolution spectrum has 3N samples, and
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Fig. 2. ESR for varying SNR for the Burg and the MCOV methods.

is denoted by R̄[k]. In order to evaluate the extrapolation

performance, we define a reconstruction error as the difference

of the ideal and the extrapolated spectrum, i.e.

E[k] = R̂[k]− R̄[k],

and compute an Error to Signal Ratio (ESR), given by

ESR =

∑K

k=1
|E[k]|2 +

∑N+2K

k=N+K+1
|E[k]|2

∑K+N

k=K+1
|R̂[k]|2

.

The ESR is reported in Figure 2, for varying SNR, averaged

over 100 noise realizations, when the extrapolation is carried

out using the Burg and the MCOV methods. From the Figure

we see that, as soon as the SNR is greater than 20 dB, the

ESR is lower than −10 dB, indicating that the extrapolation

is reliable. As expected, for high SNR, the ESR is lower for

the MCOV method, which can perfectly predict the sinusoidal

signals, than for the Burg method. As a result the MCOV may

be preferable in this SNR regime. On the other hand, when the

SNR is low, the two approaches have a similar performance.

In this case, the Burg method may be a better choice because

it grants a stable filter.

The simulator has been used to investigate the vaules of

the algorithm’s two main parameters, namely the BEF and

the number of coefficients, for a range of practical operating

conditions (SNR, number of layers etc.). The full results are

reported in [15]. Concerning the BEF, we have observed

that, as is intuitive, the ESR increases for increasing BEF.

Therefore, the maximum BEF can be obtained by assigning

a target ESR. For example, assigning ESR = −20 dB,

the maximum BEF ranges from 2 to 4 depending on the

operating conditions. Concerning the number of coefficents

M , by running simulations with varying M , we have observed

that the ESR has a minimum, which is mildly dependent on

the operating conditions and is usually close to M ≈ N/3.

D. Experiments using real data

In order to validate our methods we also carried out exper-

iments using real data. An example, similar to the one carried

out for simulated data, is described in the following. In the

experiment, we start from a real, full resolution SHARAD

spectrum, denoted by R̂[k] and having N̂ = 1800 samples.

From this spectrum, we extract the N = 600 central samples

and obtain a sequence denoted by R[k] for k = 1, ..., N
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Fig. 3. Full resolution, low resolution and enhanced resolution squared
magnitude of a SHARAD frame.

which is a low resolution spectrum. Using the low resolution

spectrum, we extrapolated K = 600 samples to the left and to

the right, using an AR filter with 200 coefficients, in order to

produce a super-resolution spectrum R̄[k] which has the same

resolution of the original spectrum. The corresponding time

domain data, obtained by means of an Inverse DFT (IDFT) of

the spectra, are reported in Figure 3. From the figure we see

that the super resolved data are very close to the original data,

indicating that the approach is indeed accurate. Moreover, we

can appreciate resolution improvement by comparing the main

lobe of the low-resolution spectrum with those of the two high

resolution ones.

V. APPLICATION TO MARSIS DATA

The MARSIS instrument [2] is a low-frequency, nadir-

looking, pulse-limited radar sounder using unfocused SAR.

The radar operates in four channels between 1.8 and 5.5 MHz

by transmitting chirp signals with 1 MHz bandwidth and 250
usec duration. The expected ground penetration is a function of

the nature of the crust and can be up to 5 Km. In the ground

data processing, the return signal is compressed in order to

achieve a range resolution of 150 m in the free space.

The typical MARSIS observation consists of six frames,

obtained from three Doppler filters over two center frequen-

cies. Each frame is constituted by 512 complex samples. The

data are processed separately for the two center frequencies.

Specifically, in the standard processing, a Hanning window

is applied to each frame, in order to reduce the side-lobes

and prevent the subsurface returns being masked by the

first surface reflection. Next, the three frames are summed

incoherently, which is an effective way to reduce the speckle

noise. On the other hand, in the enhanced processing, we apply

the EMI suppression followed by the resolution enhancement

with a BEF of 3. In both cases we employ the Burg method

and M = N/3. Then, the Hanning window is applied to

the extrapolated spectrum, in order to reduce the sidelobes.

Finally, the three frames are summed incoherently.

As a first example of the results, in Figure 4 we present

the squared magnitude of a radargram obtained from the 4
MHz center frequency, covering the North Polar Mars’ region,

where a two layer structure is clearly seen. Both the standard

radargram (top) and the enhanced one (bottom) are presented.

Observing the figure we see that the range resolution is clearly
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Fig. 4. Standard and enhanced radargrams for a MARSIS observation of the
Mars’ North pole. Black to white range: 40:80 dB.
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Fig. 5. Squared magnitude of a standard (dotted) and enhanced (continuous)
frame of the radargram of Figure 4.

improved. Moreover, the enhanced radargram is less noisy,

which is due to the EMI suppression. Both facts are also seen

in Figure 5, reporting a single frame of the two radargrams.

In particular, we see that the enhanced frame has a narrower

lobe and a lower noise level. As a final comment, note that, by

inspecting the complex data, we verified that the amplitude and

the phase of the surface and subsurface peaks are preserved

by the enhancement processing: this is an important aspect,

since these two parameters yield information useful for several

applications. In Figures 6 we present a second example taken

over the South Polar Mars’ region, again at 4 MHz. Entirely

similar comments apply.

VI. CONCLUSION

We presented a super-resolution method and an EMI sup-

pression method for radar sounders products, both based

on linear prediction. The methods grant an enhanced range

resolution and a lower noise level in the radargrams. We

investigated the methods’ performance and parameter settings

using both simulated and real data. Finally, we discussed the

application to the MARSIS data and presented examples of

the results.
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