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Abstract—This paper introduces a concept of Active Content
Fingerprinting based on a Latent data Representation (aCFP-
LR). The idea is to represent the data content by a constrained
redundant description. The target is to estimate latent represen-
tation such that: (i) after applying a reconstructor function the
result is close to the original data and (ii) after using an extraction
function the resulting features are robust.

A general problem formulation is proposed for aCFP-LR with
an extractor-reconstructor pair of constraints. One particular
case is considered under linear extractor (generator) and linear
reconstructor (modulator) where a reduction is shown to a
constrained projection problem.

Evaluation by numerical experiments is given using local image
patches, extracted from publicly available data sets. Advantages
and state-of-the-art performance is demonstrated under additive
white Gaussian noise (AWGN), lossy JPEG compression and
projective geometrical transform distortions.

Index terms− active content fingerprint, latent representation,
extractor, reconstructor, redundancy, robustness.

I. INTRODUCTION

Active Content Fingerprinting (aCFP) has emerged as a
synergy between the digital watermarking (DWM) and pas-
sive content fingerprinting (pCFP) [1]. This alternative ap-
proach covers a range of applications in the case when
content modulation is appropriate, prior to the content distribu-
tion/reproduction such as content authentication, identification
and recognition.

It was also theoretically demonstrated that the identifica-
tion capacity of aCFP [2] under the additive white Gaussian
channel distortions and `2-norm embedding distortion is con-
siderably higher to those of DWM and pCFP. Interestingly,
the optimal modulation of aCFP produces the correlated mod-
ulation to the content in contrast to the optimal modulation of
DWM where the watermark is independent to the host. Several
scalar and vector modulation schemes for the aCFP were
proposed [3], [4] and tested on synthetic signals and collections
of images. Despite of the attractive theoretical properties of
aCFP, the practical implementation of aCFP modulation with
an acceptable complexity, capable to jointly withstand signal
processing distortions such as additive white Gaussian noise
(AWGN), lossy JPEG compression, histogram modifications,
etc. and geometrical distortions (affine and projective trans-
forms) remains an open and challenging problem.

On the other hand in the recent years, local, i.e., patch-
based, compact, geometrically robust, binary descriptors such
as SIFT [5], BRIEF [6], BRISK [7], ORB [8] and the family
of LBP [9] have become a popular tool in image processing,
computer vision and machine learning. These local descriptors
are also considered as a form of local pCFP.

A. Prior Work

Up to our best knowledge, there is little prior work on the
modulation of local descriptors in the scope of aCFP or DWM.

In [10] an aCFP was proposed with a linear modulation
subject to convex constraint on the properties of the resulting
local descriptors and the optimal solution was given when
the feature map is invertible. The main open issues with the
proposed optimal solution are related to the assumptions about
the linear feature map.

The authors in [11] addressed the general case from two
distinct perspectives. Firstly, they proposed a direct approxi-
mation of the linear feature map and secondly they presented
a novel problem formulation for the linear modulation and the
constraints on the properties of the resulting local descriptor. In
the former case, the used linear map is predefined and analytic,
therefore the open issues are related to the properties of the
used linear map that are crucial for the achievable modulation
distortion and the resulting feature descriptor.

To reduce the modulation distortion and explicitly regularize
the features properties, [12] proposed the joint learning of a
linear feature map and linear aCFP modulation. The authors
provided a novel problem formulation and gave iterative alter-
nating algorithm with convergence result.

B. Contributions

This paper proposes a concept of aCFP-LR to estimate
a constrained representation that describes the content. The
motivation is to use redundancy in the latent representation
in order to be robust to noise. In general, this means that
once the latent representation is perturbed by the noise (i) the
reconstructor function should recover the original data, and (ii)
the extractor function should provide the original features. The
general scheme is shown in Figure 1.

Considering an extension of the concept of aCFP, this paper
focuses only on one specific case with two constraints. The
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first one is (ii) mentioned in the paragraph above under noise
perturbations of the latent representation. The second is similar
to (i), but, now the reconstructor function is applied only to
the latent description and should provide the original data. The
latter is also known as modulation.

Nonetheless, the advantage is that the redundancy adds one
more element to compensate the trade-off between modulation
distortion and feature robustness. In other words, we try to add
redundancy to achieve small modulation distortion and high
feature robustness.

The contributions of this paper are the following, we:
(i) introduce an extension of the core principle of active

content fingerprinting by focusing on latent representation
estimation with constraints imposed by the extractor and
reconstructor functions pair,

(ii) propose a generalized problem formulation with explicit
regularization of the trade-off between the distortion and the
robustness of the local feature by considering constraints
on the distribution of (i) the data modifications, (ii) feature
modifications and (iii) on the actual latent representation of
the content and

(iii) validate the proposed approach by a computer simula-
tion using publicly available data under several image process-
ing distortions, including AWGN, lossy JPEG compression,
and projective geometrical transform.

C. Paper Organization
The organization of the paper is as follows. Section 2

introduces the approach, gives a short description of the aCFP
and highlights the difference between aCFP and aCFP-LR.
Section 3 presents the general problem formulation and under
linear modulation and linear feature maps, shows a reduction
to a low complexity constrained projection problem. Section
4 is devoted to computer simulation and Section 5 concludes
the paper.

II. ACFP-LR VS ACFP
The aCFP framework consists of content modulation, prior

to its reproduction and descriptor extraction that includes fea-
ture mapping and quantization. The core idea behind the aCFP
modulation [3] and [10] is based on the observation that the
magnitude of the feature coefficients before the quantization
influences the probability of the bit error in the descriptor bits.

Descriptor bit flipping is more likely for low magnitude
coefficients. Therefore, it is natural to modify the original
content by an appropriate modulation and to increase these
magnitudes subject to distortion constraints.

The main idea behind the proposed aCFP-RL is to produce a
resilient to noise data representation such that after applying a
feature generator function the resulting features are robust. At
the same time, the reconstructor (modulation) function applied
on the latent representation should give the original data.

Two operational modes are considered: (i) modulation and
(ii) verification. The modulation estimates the latent repre-
sentations that describe the content. During verification, the
features from the noise perturbed latent representation are
extracted and the fingerprint is computed.
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Fig. 1. A general scheme of aCFP-LR using a latent representation, extractor,
and reconstructor functions.

A. pCFP, aCFP and aCFP-LR: Feature Generation

A shared component in pCFP, aCFP, and aFP-LR is the
feature extraction.

Assume that from the original image is obtained a patch,
denoted as xo ∈ <N . This paper considers a generalized
feature compositional case (with or without nonlinearity),
where the extraction of the local features is defined as follows:

fo =
∑
s

Fsfs(Psxo), (1)

Ps ∈ <M×N and F = [F1, ...,FS ],Fs ∈ <L×M are linear
maps and fs : <M×1 → <M are functions describing element-
wise nonlinearity, L, M and N are the lengths of the final,
intermediate and input data representation, respectively, and
s ∈ {1, .., S}. Note that the map can be either predefined,
data independent and analytic or learned, data dependent and
content adaptive.

The feature extraction is followed by a quantization Q(.)
that results in a quantized local descriptor denoted as bo =
Q(fo) ∈ {0, 1}L, where

Q(fo(i)) =

{
1, if fo(l) ≥ 0,
0, if fo(l) < 0,

∀l ∈ {1, ..., L}. (2)

Note that the differences between the existing classes of local
descriptors are determined by the defined mapping (1) and the
type of quantization Q(.).

B. aCFP-LR: Reconstruction from Latent Variables

In aCFP, the concept is based around the modulated data
xm ∈ <N that should be close to the original data represen-
tation xo. The aCFP-LR takes into account the reconstruction
from S latent representations xm,s ∈ <L, s ∈ {1, ..., S} to
xo. Assuming that the S latent variables xm,s are given then
a general reconstruction function is defined as follows:

xm =
∑
s

Zszs(Bsxm,s), (3)

where Bs ∈ <M×L and Z = [Z1, ...,ZS ],Zs ∈ <N×M are
linear maps and zs : <M×1 → <M are functions describing
an element-wise nonlinearity.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1432



III. ACFP-LR PROBLEM FORMULATION

This paper presents a general problem formulation for
estimation of the underlying data representation that describes
the content. The corresponding optimization problem is the
following:

min
hm

ϕ (v (hm) ,xo) + λ1ψ (g (hm) , τ) + λ2r (hm) , (4)

where xo is the original data, hm = [xm,1, ..,xm,S ] is the
latent data representation, v(hm) is the reconstructor function,
g(hm) is the generator function and the function r(hm)
imposes constraints on the properties of hm. The modulation
level and the Lagrangian variables are denoted as τ , λ1 and
λ2, respectively.

The first mapping function v(hm) is the reconstructor
function that is applied to the latent representation hm in order
to match v(hm) to the original data representation xo, where
ϕ (v (hm) ,xo) is a function that penalizes the distortions in
the original data domain.

The second function g(hm) transforms hm into features and
tries to make g (hm) robust, where ψ (g (hm) , τ) is a function
that penalizes non-robust feature components.

In general (4) represents one form of a min-max problem.
Moreover, note that (4) is also one case of the formulation
proposed in [10]. However, in this manuscript the target is not
the actual data, but, rather the latent representation.

A. Linear Generator and Modulator

This paper addresses (4) by considering a setup of linear
modulation under assumptions given as below.

1) Reconstructor and Generator Distortions: The func-
tion ϕ (v (hm) ,xo) is defined as ϕ (v (hm) ,xo) = ‖xo −
v (hm) ‖22. The function ψ (g (hm) , τ) is replaced by an
explicit inequality constraint |AFhm| ≥e τ1 where AF ∈
<L×SN and ≥e represents an element-wise inequality.

It is assumed that there is no element-wise nonlinearity, i.e.,
zs(xm,s) = xm,s and no specific function r(hm) is defined
other then the explicit inequality constraint |AFhm| ≥e τ1.

2) Linear Generator (Feature Extraction): The feature
extraction function is defined as the linear version of (1).
Assuming the modulated data xm,s are given, the features are
extracted as follows:

fm = g(hm) =
∑
s

FsPsxm,s, (5)

where the linear maps Ps are generated at random. The linear
maps Fs are defined using a constraint matrix, data samples
(or their clusters) and random sampling. We describe the
construction of the linear maps Fs in the following.

Let C ∈ {−1, 0,+1}L×M be the matrix that encodes the
m-wise (pair-wise, triple-wise, etc.) constraints that describe
the geometrical configuration of the considered data (pixel)
interactions. Given a data set of patches, assume that M
centroids [a1,a2, ...,aS ] are estimated using a k-means algo-
rithm. Denote a transformation matrix as Ts ∈ <M×N , where
Ts = R

[
asa

T
s

]−1 ∈ <N×N and R ∈ <N×N is a randomly
constructed matrix. First the matrix asa

T
s is quantized to J

levels, where for every quantization level q ∈ {1, 2, 3, ..., J},
there exists a set Lq of indexes to the elements in aia

T
s , all

of the Lq are with the same cardinality. Then for every index
set Lq the corresponding elements of R are generated from a
uniform distribution with support [0, 1]. The main idea is to
try to have an equal contribution of the elements of asa

T
s in

the linear feature map CTs.
Finally, the linear maps Fs are estimated as follows:

Fs =

(
U

[
Σp 0

0 0

]
VT

)T
, (6)

where UΣVT is the SVD of (CTs)
T and Σp is a diagonal

matrix having p non-zero diagonal elements equal to the largest
p singular values from Σ. The value of p determines the rank
of Fs.

3) Linear Reconstruction (Modulator): Let Bs = I and
Zs = I, then the simplest modulation on multiple latent
variables is defined as:

xm = v(hm) =
∑
s

zs(xm,s). (7)

Note that by using (7) and ϕ (v (hm) ,xo) the modulation and
the reconstruction are seen as equivalent.

The following presents the problem formulation under the
previous assumptions 1, 2 and 3.

Proposition 1: The aCFP-LR under constraints 1, 2 and
3 with linear modulation, linear feature map and convex
constraints on the properties of the latent representations is
a constrained projection problem:

hm = arg min
hm

1

2
‖xo − [IN×N , ..., IN×N ]hm‖22 (8)

subject to |AFhm| ≥e τ1,

where IN×N is an N × N identity matrix, AF =
[A1, ...,AS−1,0L×N ], 0L×N is a zero matrix with dimen-

sions L × N , hm =

[ xm,1
.
.

xm,S

]
, xm,s ∈ <N are the latent

representations, As = FsPs are the linear feature maps and
s ∈ {1, ..., S − 1}.

The goal is to allow an arbitrary large distortion
between xo and xm,i, but, very small distortion be-
tween xo and

∑S
s=1 xm,s and robust features fm =

[A1, ...,AS=1]

[ xm,1
.
.

xm,S−1

]
that would satisfy the constraints in

(8). The key is to estimate all xm,s and use every modulated
component xm,s independently, rather then the original data
xo. In this way the additional element that is added to the
concept of aCFP is the redundancy.

In this case the trade-off is between modulation distortion,
feature robustness and the amount of redundancy.

B. Verification

Only the first S − 1 latent representations xm,s from
hm are involved in the constraint in (8). The inequality
| [A1, ...,AS−1,0L×N ] hm| ≥e τ1 enforces these first S − 1
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latent representations xm,s to be sparse. There is no con-
straint on the variable xm,S that appears in the cost function
‖xo −

∑
s xm,s‖22 of (8). Therefore, xm,S is not sparse and it

will always have a larger `2-norm than the `2-norm of the rest
xm,s, s ∈ {1, ..., S − 1}.

This is important at the verification stage. Since even if
we have all xm,s but we do not know the component xm,S ,
if we have the prior knowledge that the `2-norm of xm,S is
greater then any of the `2-norms of the rest of xm,s then the
component xm,ŝ can be simply estimated by computing the
following:

ŝ = arg max
1≤s≤S

‖xm,s‖2. (9)

At the verification stage, it is assumed that noise is indepen-
dently added to every modulated component xm,s. Afterwards,
the noisy modulated component is ym,s = xm,s + xN ,s and
the fingerprint is estimated as:

by = Q

(
S−1∑
s=1

Asym,s

)
. (10)

IV. COMPUTER SIMULATIONS

This section validates the proposed approach by numerical
experiments and demonstrates the advantages of the aCFP-LR.
The performance is evaluated under several signal processing
distortions, including AWGN, lossy JPEG compression and
the projective geometrical transform. The results are compared
with those from the pCFP, aCFP and aCFPL schemes.

The UCID [13] image database was used to extract local
image patches. The ORB detector [8] was run on all images,
and
√
N×
√
N pixel patches,

√
N = 31 were extracted around

each detected feature point. The features were sorted by scale-
space, 30 patches were used from each individual image.

A. Lenear Feature Maps

Given the extracted image patches, pCFP, aCFP, aCFPL and
aCFP-LR used the following linear maps for feature extraction:

1) pCFP and aCFP: Both use A1. It is defined as
A1 =

(
UIL×MVT

)T
where U,V are obtained by singular

value decomposition (SVD) of (CT1)T . The matrix T1 =

R
[
xox

T
o

]−1 ∈ <N×N and R ∈ <N×N is a random matrix,
generated from a uniform distribution with the support [0, 1].
The matrix AT

1 is the closest orthogonal to (CT)
T , satisfying

AT
1 A1 = I and easily invertible.
2) aCFPL: It uses the matrix AL that is learned from the

half of the total available patches. The remaining half is used
for evaluation.

3) aCFP-LR: It uses the matrx A = [A1, ...,As] =
[F1P1, ...,FSPS ], where Fs and Ps are defined as in Sec-
tion III-A, s ∈ {1, .., S − 1} and the number of redundant
representations is set to S = 12. The solution of (8) is found
using the CVX [14] publicly available solver.

B. Noise Distortions

The following distortions are simulated:

1) AWGN: The results from a single patch were obtained as
the average of 100 AWGN realizations. Four different noise
levels were used, defined in PSNR= 10 log10

2552

σ2 are 0dB,
5dB, 10dB and 20dB. The used modulation level (mL) is 60
for pCFP, aCFP and aCFPL, and mL = 100 for aCFP-LR.
The results are shown in Table I.

2) Lossy JPEG Compression: Three JPEG quality factor
(QF) levels 0, 5 and 10 were used. The used modulation level
(mL) is 30 for pCFP, aCFP and aCFPL, and mL = 100 for
aCFP-LR. The results are shown in Table II.

3) Projective Transform with Lossy JPEG Compression: A
projective transformation P ∈ <3×3 was used, where:

P =

 1.0763 0.0325 0
0.0119 1.09 0
−24.32 −70.37 1

 ,
followed by a lossy JPEG compression with QF=5. The used
modulation level is 60 for pCFP, aCFP and aCFPL, and mL =
100 for aCFP-LR. The results are shown in Table III.

C. Measures

Three measured quantities are used in the evaluation:
1) Modulation Level: Define to = ATxo =(∑S−1
s=1 As

)
xo, where AT =

(∑S−1
s=1 As

)
then let

so, |s (i) | ≤ |s (j) |, ∀i ≤ j, i, j ∈ {1, 2, 3, ..., L} be a
sorted |to| vector and let AT1 be rows reordered AT such
that AT1xo = so. The modulation level mL is defined in
percentage mL = K

L 100, 1 ≤ K ≤ L and it represents
the fraction of coefficients so that are modified. At a single
modulation level, the modulation threshold τ for the aCFP-LR
method is defined as τ = 100 max1≤i≤K |so (i) |, for the
aCFP and aCFPL τ = max1≤i≤K |so (i) |.

2) Modulation Distortion: The modulation distortion for
aCFP-LR is defined as DWR = 10 log10

(
2552

∆2

)
, ∆ =

1
N ‖xo −

∑
s xm,s‖2 for aCFP and aCFPL is defined as

DWR = 10 log10

(
2552

∆2

)
, ∆ = 1

N ‖xo − xm‖2.
3) Probability of Bit Error: The probability of bit error

defined by the probability of correct bit pe = 1 − pc,
pc = 1

L

∑L
i=1 I{bx (i) , by (i)} with L = 256 bits, where

bx = Q ((
∑
s As)xo), by = Q (

∑
s As (xm,s + xN ,s)),

xN ,s is the introduced distortion and I is an indicator function
I{a, b} = 1 if a = b and I{a, b} = 0 otherwise.

D. Results

The provided evaluation takes into account an average
results for a total of 500 image patches.

The results in Tables I, II and III show that the proposed
approach has a superior performance in terms of probability of
bit error and modulation distortion compared to pCFP, aCFP
and aCFPL.

In Table IV are presented the results considering extreme
cases of noise. Even under severe, very high noise levels
the aCFP-LR achieves a small probability of error and small
modulation distortion.
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In summary, this evaluation shows that using the proposed
approach it is possible to achieve a small modulation error
and very high robustness on the features, even under severe
noise levels. However, this performance is at the cost of adding
redundancy in the underlying representation and the ability to
differentiate xm,S from the rest xm,s, s ∈ {1, ..., S−1} under
noise perturbations.

V. CONCLUSION

This papers introduced the concept of aCFP-LR and pro-
posed a novel general problem formulation described by a
latent representation, extractor and reconstructor functions. A
linear modulation was addressed on a latent data representation
with constraints on the modulation distortion and the resulting
feature properties.

A computer simulation was provided using local image
patches. Superior performance was demonstrated under the
distortions AWGN, lossy JPEG compression and projective ge-
ometrical transform compared to the pCFP, aCFP and aCFPL
schemes.
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pe

pCF aCFP aCFPL aCFP-LR

0dB .149 .064 .063 .009
AWGN 5dB .12.1 .022 .022 .008

10dB .092 .005 .004 .007
20dB .028 0 0 0

pCF aCFP aCFPL aCFP-LR

mL 0 60 60 100
DWR ∞ 4.7 6.9 291

TABLE I
THE DWR AND THE pe OF UNDER DIFFERENT ADDITIVE WHITE

GAUSSIAN NOISE (AWGN) LEVEL.

pe

pCF aCFP aCFPL aCFP-LR

0 .082 .025 .024 .012
QF 5 .082 .015 .012 .010

10 .028 .012 .011 .007

pCF aCFP aCFPL aCFP-LR

mL 0 30 30 100
DWR ∞ 4.7 6.9 291

TABLE II
THE DWR AND THE pe UNDER DIFFERENT JPEQ QUALITY FACTOR

(QF).

pe

pCF aCFP aCFPL aCFP-LR

Projec. QF=5 .058 .048 .047 .04

pCF aCFP aCFPL aCFP-LR

mL 0 60 60 100
DWR ∞ 4.7 6.9 291

TABLE III
THE DWR AND THE pe UNDER JPEQ QUALITY FACTOR QF=5 AND

PROJECTIVE TRANSFORMATION.

pe

-10dB .015
AWGN -20dB .019

-30dB .020

DWR

mL 100 291

pe

-40dB .071
AWGN -50dB .301

-60dB .321

DWR

mL 100 291

pe

3 .042
Proj. QF 2 .054

1 .061

DWR

mL 100 291

pe

-10dB .061
Proj. AWGN -20dB .074

-30dB .123

DWR

mL 100 291

TABLE IV
THE DWR AND THE pe FOR ACFP-LR UNDER PROJECTIVE TRANSFORM

AND EXTREMELY LOW QF AND HIGH AWGN LEVELS.
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