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Abstract—The alignment of two utterances is the basis of many
speech processing applications. The acoustic user interface of
such applications should be capable of detecting insufficient align-
ment results and identifying the responsible input utterances.
In this paper, we discuss the automatic validation of speech
alignment and propose two new validation algorithms. The first
method relies on locating and matching the syllable nuclei of the
aligned utterances. The second method performs syllable-level
comparison of the speech signal envelopes in accordance to the
alignment time-warping path. Experimental results show that
the proposed algorithms perform consistently well and can be
effectively applied for the validation of different speech alignment
methods.

Index Terms—speech alignment, HMM-based forced align-
ment, dynamic time warping, alignment assessment

I. INTRODUCTION

Speech alignment is fundamental in various speech pro-
cessing applications such as automatic dialog replacement
[1], voice conversion and transplantation [2], pronunciation
evaluation in second language learning [3], assessment and
processing of speech disorders [4], [5]. The alignment of the
user’s speech input (source utterance) with a speech model
(reference utterance) concerns the identification of the relative
timing differences between the corresponding speech signals
using a timing analysis technique. In real-world systems,
various factors such as the user’s pronunciation or the presence
of background noise can influence the alignment result.

From an acoustic user interface point of view, it is desirable
that only speech inputs of adequate quality are processed.
Depending on the application, criteria such as the SNR, dis-
tortion analysis (e.g., due to signal clipping), or intelligibility
measures [6] can be applied for the assessment of the input
speech signal. In applications where a specific user utterance
is expected, an invalid input would result in unpredictable pro-
cessing outcome. It is, therefore, important that the application
is capable of detecting and discarding wrong inputs. This task
is not always straightforward. For example, the interpretation
of the user’s input using speech recognition technology is not
suitable for all types of applications.

In speech alignment, a good correspondence between the
source and the reference utterance is essential to allow for
reliable results. The validation of the alignment output is a
critical task which could feedback the user input verification
process. To the best of our knowledge, no prior research
attention has been drawn in the area of the automatic validation
of speech alignment. In this paper, we address this requirement
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by investigating complementary verification strategies. Our
goal is the overall evaluation of the alignment for determining
whether it has been successfully completed and if its outcome
can be used by subsequent speech processing components.
To this purpose, two computationally simple methods are
introduced. Both methods are designed to be independent
of the alignment algorithm. In the first method, we propose
locating and matching the syllable nuclei in the aligned source
and reference utterances. The second method relies on the
comparison of the speech signal envelopes in each syllable
in accordance to the alignment time-warping path.

The paper is organized as follows. In Section II, we provide
an overview of speech alignment methodologies and further
motivate the importance of validating their outcomes. The
proposed strategies for the automatic validation of speech
alignment are detailed in Section III. In Section IV, we
present and discuss our experimental results. Finally, Section
V concludes this paper and provides an outlook.

II. BACKGROUND

Two major approaches exist for estimating the timing re-
lationship (time-warping path) between two speech signals:
the Hidden Markov Model (HMM)-based phonetic alignment
and the Dynamic Time Warping (DTW). Figure 1 shows an
example of a time-warping path. In the HMM-based align-
ment, the timing relationship is estimated by making use of
speech recognition paradigms. An acoustic model is used for
providing an overall statistical representation of the distinct
sounds of a language that are not specific to one speaker or
speaking style. Essentially, the alignment between two speech
signals is achieved via their individual phonetic segmentation.
Using a pre-trained acoustic model and the phonetic transcrip-
tion of the utterance, the alignment task reduces to determining
the phoneme boundaries in both source and reference acoustic
recordings, as shown in Figure 2. The complete time-warping
path can be inferred from the phoneme boundaries through
interpolation. An overview of HMM-based alignment methods
can be found in [7]. HMM-based alignment is known to
perform well in various applications. An inherit drawback
is that it is language specific and its performance degrades
for different speaking styles (e.g., pronunciation variations,
expressive speech, dialects). Implementing an HMM-based
alignment method typically results in relatively more complex
systems and its performance depends on the quality of the
acoustic model.

The DTW is an earlier, well-known technique for computing
an alignment time-warping path between two utterances with-
out requiring a phonetic transcription. In speech processing, it
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Fig. 1. Time-warping path between the source and reference utterances of
speakers with different voice characteristics.

Fig. 2. HMM-based phonetic segmentation of the French utterance “Elle va
étudier”.

was initially applied for the comparison of speech patterns in
the context of speech recognition [8]. As the DTW operates on
speech signal level, it is language independent and does not
require training an acoustic model. Essentially, DTW algo-
rithms aim at measuring the similarity between two temporal
sequences which may vary in speed. The two sequences are
aligned by warping the time axis of their feature vectors (e.g.,
the Mel-frequency cepstral coefficients (MFCC)) iteratively
until an optimal match between the two sequences is reached
in terms of similarity. The main concept of the algorithm,
recent improvements and related alignment techniques can be
found in [9].

An important challenge for both methods is how to evalu-
ate the alignment outcome. The output likelihood computed
during the HMM-based alignment of a phoneme contain
information about how close this uttered phoneme was to the
corresponding model. Intuitively, the likelihood score could
be used for assessing the alignment’s quality. In practice,
the likelihoods depend on the quality of the acoustic model
(e.g., size of training corpus, coverage of different speaking
styles and pronunciations). According to our observations,
successfully aligned utterances may still result in relative low
likelihoods due to a particular speaking style or accent. More
importantly, because the phoneme boundaries are selected so
that a maximum likelihood criterion is satisfied, misaligned
utterances very often preserve high likelihood scores. Hence,
the likelihood scores, either in phoneme level (local) or for
the entire utterance (global), do not always provide a reli-
able measure of the alignment’s overall quality. In DTW, a
measure of goodness of the alignment can be obtained via
the global accumulated DTW distance, which is computed as
the weighted sum of feature vector distances along the time-

warping path. In our experience, the accumulated distance is
pronunciation and voice type dependent, e.g., due to spectral
differences in male/female voices. Hence, its use as a single
criterion of the alignment’s quality can be ambiguous. In the
following section, we examine how these uncertainties can be
resolved by complementary methods specifically designed for
validating the alignment results.

III. PROPOSED METHODS

A. Syllable Nuclei Matching

The intention of the SNM method is to assess the alignment
outcome by matching the position of syllable nuclei in the
source and reference utterances. The syllable nucleus is typi-
cally a vowel or, in some languages, a syllabic consonant. This
work considers the French language where the syllable nucleus
is always a vowel and its presence is obligatory. Hence, we can
detect the syllable nuclei via a vowel detection algorithm, such
as the Low Frequency Modulated Energy (LFME) proposed in
[10]. This method is based on the rationale that vowels possess
a considerable amount of energy in the low frequency region.

The detection of the syllable nuclei can be determined from
the peaks in the energy contour of the speech signal. The
energy contour ei(m) of a signal x(n) that corresponds to a
frequency bin region [ki1, k

i
2], can be computed as

ei(m) =
1

LfftLwin

ki
2∑

k=ki
1

wk|Xk(m)|2, i = 0 . . . N − 1 (1)

where Xk(m) is the STFT of x(n) with k and m the frequency
and frame indexes, respectively. Lfft represents the length
of the FFT, Lwin is the length of the frame in samples and
N is the number of sub-bands. Here, wk represents the pre-
emphasis weights for compensating the energy declination
due to the speech spectral slope (commonly 6dB/octave). The
LFME trajectory is calculated from the above as

LFME(m) = e20(m)
N−1∑
i=1

ei(m) (2)

where e0 is the energy in the lowest frequency band, typically
[300Hz, 800Hz]. The syllable nuclei are estimated via peak
pruning based on amplitude and temporal criteria as detailed in
[10]. The speech signals are normalized beforehand according
to their RMS energies, allowing common thresholds to be
applied for all utterances. Figure 3 shows the normalized
LFME trajectory for the same phrase as in Figure 2, and the
correspondence of its peaks to the phonetic transcription of
the utterance’s syllable nuclei.

The following summarizes the proposed matching approach.
Starting from the estimated syllable nuclei positions in the
source and reference utterances, we cluster them according to
the syllable where they belong. With regards to the reference
utterance, this task can be performed and, if necessary, be
manually adjusted in advance. The boundaries of syllables for
both source and reference are considered known or can be
inferred from the speech waveform, as it will be discussed
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Fig. 3. The LFME and the corresponding syllable nuclei.

latter on. Ideally, we would expect one nucleus per syllable.
In reality, additional nuclei candidates or no nucleus at all
might be assigned to a syllable due to imperfect estimation,
mispronunciations, etc. Supplementary nuclei candidates in a
given syllable can also occur due to the presence of pro-
nounced plosives, voiced consonants, or semi-vowels. In a
first step, we compare the number of nuclei candidates in
each syllable between source and reference utterances. The
objective is to identify syllables where either no nucleus is
assigned, or the difference in the number of nuclei candidates
exceeds a threshold tns ∈ Z≥0. If the number of syllables
identified in the previous step is higher than a threshold
tnn, the underlying nuclei mismatch indicates that the two
utterances do not sufficiently correspond with each other and
the alignment result should be discarded. In order not to favor
shorter utterances, we define the threshold tnn proportionally
to the number of syllables as tnn = max(tmin

nn , bα nsyle),
where tmin

nn ∈ Z≥0 is the minimum threshold value, parameter
α ∈ [0, 1] controls the threshold value, nsyl is the number of
syllables, and b e denotes the nearest integer function.

When the number of identified syllables is below tnn, we
further evaluate the alignment result through the Euclidean
distance of candidate nuclei positions between source and
reference syllables. In this computation, candidate nuclei po-
sitions of the source utterance are projected to the reference
through the alignment’s time-warping path. Syllables with no
assignments are excluded from this computation. For syllables
with unequal number of assignments, only those assignments
that result in minimum distances are considered. The distance
measure is either evaluated in syllable level for the identifica-
tion of local alignment mismatches, or the mean distance is
used for the validation of the overall alignment. If the distance
exceeds a threshold tnd ∈ <≥0, this is a sign of inaccuracies
in the alignment and its result can be discarded.

B. Syllable Envelopes Comparison

The key idea of the SEC method is to perform a syllable
by syllable comparison of the speech signal envelopes for
validating the alignment outcome. The rational behind this
choice is that speech signal envelopes convey various temporal
cues related to aspects such as articulation, voicing, vowel
identity, or syllabification [11]. Different methods for the
extraction of a signal’s envelope exist in the literature [12].

We compute the speech envelope using an efficient three-
step approach proposed in [13]. In this method, the amount
of smoothing can be directly influenced through the analysis
window length. The obtained smoothed envelope curve is
segmented according to the syllable boundaries. Similarly to
the SNM method, we assume that the syllable boundaries
of both source and reference are known or can be inferred
from the speech signal. The envelope curve of each source
syllable is time-scaled according to the time-warping path. In
order to account for amplitude differences between the signals,
both source and reference envelopes are normalized for each
syllable according to their RMS amplitude.

The comparison of the envelope curves is performed in
terms of Fréchet distance. The Fréchet distance between two
curves in a metric space is a measure of the similarity between
two curves and it can be computed as described in [14].
This distance measure can be interpreted as the minimum
length of a line that connects a point on each curve, and
allows one to traverse both curves from start to finish. Syllable
pairs whose distance measure exceeds a threshold tes ∈ <≥0

are considered as potential misalignment candidates. If the
total number of misalignment candidates is higher than a
threshold ten, we are probably dealing with two utterances
that exhibit different temporal cues and the alignment result
should be discarded. Similarly to before, the threshold ten is
defined as ten = max(tmin

en , bβ nsyle), with tmin
en ∈ Z≥0 the

minimum threshold value and parameter β ∈ [0, 1] adjusting
the threshold value proportionally to the number of syllables
nsyl.

IV. RESULTS & DISCUSSION

Our evaluation is based on a French speech corpus con-
sisting of 127 utterances (up to 10 syllables long) by five
different speakers, two native (one male, one female) and three
non-native (one male, two female). Every speaker uttered the
complete set of phrases. The utterances are properly selected
in order to offer a good phonetic coverage of the French
language. The sampling rate is 16kHz and the recordings took
place in clean conditions. A training corpus was defined as a
subset of 60 utterances. The remaining utterances form the
test corpus. One of the native speaker sets was used as the
alignment’s reference utterances and the remaining speaker
sets as the source utterances. The optimization of the param-
eters related to LFME algorithm was performed similarly to
[10]. The selection of parameters for each proposed method,
as well as for the combination of the two, was performed using
the training corpus. Pairs of training corpus utterances were
given as input to the speech alignment. The parameter values
were iteratively optimized so that the following criterion was
met: all alignment results from matching source and reference
utterances to be successfully validated, while maximizing
the number of misalignment detections due to non-matching
utterances.

Both HMM-based and DTW alignment methods were con-
sidered during the evaluation. Our implementation of the
former is similar to that of [15]. Regarding the DTW, it was
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developed in the scope of [3] and incorporates improvements
proposed in [1], [16]. In this evaluation, we assume that the
syllable boundaries of all utterances are known. This allows
us to decouple the methods’ performance from the syllable
estimation task. To this purpose, we obtain the corresponding
syllables structure along with the phonetic transcriptions re-
quired for the HMM-based alignment from the orthographic
transcription through eLite-HTS [17]. In the case of DTW,
the boundaries are inferred from the reference by applying
the alignment time-warping path (see dashed lines in Figure
1 for an example). In the absence of phonetic segmentation
for the reference utterance, the closely spaced LFME peaks
can be clustered according to a distance criterion. Syllable
boundaries can then be roughly approximated as the equidis-
tant locations between clusters, as in the example of Figure 3
(vertical dashed lines). Although informal testing shows that
this approach is sufficient in our context, interested readers
may refer to elaborated algorithms that attempt to segment a
speech waveform into syllables [18].

We performed an objective assessment of SNM and SEC,
as well as a serial combination of the two (SNM-SEC). Our
intention was to evaluate the capacity of the proposed methods
in validating the global alignment outcome. Low level (i.e.,
phoneme by phoneme) evaluation of the alignment’s quality
was not in our scope. The performance was assessed in terms
of misalignment detection rate, defined as the percentage of
accurate detections over the total misaligned results. First,
global misaligned results were triggered by attempting to
align mismatching input utterances. All pair combinations
of non-corresponding source and reference utterances of the
test corpus were used. In a second step, misalignment was
induced locally by altering the source utterances. Alterations
were performed in syllable level. Three types were considered:
deletion, insertion and replacement of syllables. All alterations
were performed randomly, affecting up to three syllables per
utterance.

Consistent evaluation results were observed for both align-
ment methods, with small variations being due to the different
impact the performed alternations have on the alignment
result of each method. Table I summarizes the aggregated
detection rates of both alignment methods. High detection rates
are observed for the global misaligned utterances with SEC
outperforming SNM, while SNM-SEC achieves a detection
rate up to 89.1%. This underlines the capacity of the proposed
methods in identifying invalid input utterances. As far as the
local misalignments are concerned, SNM results in somewhat
higher detection rates than SEC. However, when the two
methods are combined, a better performance is achieved for all
investigated misalignment types. Our results confirm that the
detection of local misalignments is a more challenging task
especially when, as it was chosen in this evaluation, only a
small number of syllables is affected. Our analysis indicates
that misdetections are mainly due to the preservation of nuclei
locations and envelope similarities in the altered utterances.
This observation could motivate in the future the choice of
alternative validation criteria specific to the assessment of local

TABLE I
DETECTION RATES FOR VARIOUS MISALIGNMENT TYPES.

Misalignment Type SNM SEC SNM-SEC

Global Mismatch 70.9% 79.5% 89.1%
Local Insertions 41.8% 37.3% 55.5%
Local Deletions 55.5% 38.2% 64.5%

Local Replacements 50.1% 46.4% 73.6%

alignment results.
Finally, a subjective experience evaluation was conducted in

the context of a user experience testing related to [3]. Ten non-
native French speakers participated in the test. Analysis of the
users post-experience interviews indicates that the application
was perceived as more well-performing when it was capable
of detecting invalid input utterances. This highlights the im-
portance of the automatic speech alignment validation from an
acoustic user interface point of view. Moreover, a post-analysis
of video recordings containing each user’s interaction shows
that the selection of the algorithm’s parameters plays a very
important role in real-world scenarios. Parameters resulting in
more frequent rejections of valid input utterances, e.g., due to
pronunciation variations but also due to presence of ambient
noise or reverberation, were found more likely to decrease the
user experience satisfaction (e.g., preventing some users from
completing certain tasks). Overall, the experience evaluation
confirmed that the proposed methods can be efficiently applied
in real-time applications and verified the capacity of the pro-
posed methods in the automatic validation of speech alignment
in real-world settings.

V. CONCLUSION

In this paper, we investigated the importance of automat-
ically validating the results of speech alignment algorithms.
After providing an overview of speech alignment methodolo-
gies, we introduced two novel validation methods. The SNM
method relies on locating and matching the syllable nuclei
of the aligned utterances, while the SEC method performs
syllable-level comparison of the speech signal envelopes in
accordance to the alignment time-warping path.

Our experimental evaluation and subjective experience test-
ing in real-world settings confirmed the potential of both pro-
posed methods (as well as of their combination) in validating
the global alignment outcome, and especially in identifying
invalid input utterances. The detection of insufficient local
alignment results appears to be a more challenging task,
especially when only a small number of syllables is affected.
Therefore, the results of this research work could motivate
future developments specific to local alignment validation
(e.g., due to variations in pronunciation). Finally, future work
could also investigate the automatic validation of phonetic
alignment where no reference utterance is available and, hence,
the validation needs to be performed against the phonetic
transcription of the utterance.
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