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Abstract—In this paper an automatic method for the selection
of those Fourier descriptors which better correlate a 2D shape
contour is presented. To this aim, shape description has been
modeled as a non linear approximation problem and a strict
relationship between transform entropy and the sorted version
of the transformed analysed boundary is derived. As a result,
Fourier descriptors are selected in a hierarchical way and the
minimum number of coefficients able to give a nearly optimal
shape boundary representation is automatically derived. The
latter maximizes an entropic interpretation of a complexity-based
similarity measure, i.e. the normalized information distance.
Preliminary experimental results show that the proposed method
is able to provide a compact and computationally effective
description of shape boundary which guarantees a nearly optimal
matching with the original one.

Index Terms—Shape representation, Fourier descriptors, non
linear approximation, differential entropy, normalized informa-
tion distance (NID)

I. INTRODUCTION

In the last years, automatic contour-based object analysis
and recognition is receiving an even more increasing interest,
especially due to the rapid increase of multimedia information.
The huge amount of visual information requires effective
content description for storage, retrieval and processing pur-
poses, just to mention some applications. Shape is one of
the key features for describing an object, along with texture
and color. A shape descriptor can be defined as a set of
numbers which gives an accurate, compact and discriminative
shape representation, allowing straightforward comparisons. A
shape descriptor is also required to be low computationally
demanding. Shape descriptors can be broadly classified in:
volume-based and contour-based. The former involve all pixels
of the object; geometric [7] and Zernike moments [11] belong
to this class. Contour based descriptors only use shape bound-
ary, as, for example, curvature scale space [10], [14], active
shape models [3], hierarchical skeletons [18] and Fourier
descriptors [15], [20]. The latter can be considered global
descriptors, since they describe the whole contour; on the
contrary, local descriptors focus on its local relevant features.
Local descriptors play a fundamental role in the search of cor-
respondences between objects, feature detection, registration,
segmentation and labeling; global descriptors are involved
in object retrieval, classification, recognition and clustering.
Fourier descriptors are the coefficients of the discrete Fourier
transform of some representation of a closed contour, often

denoted by signature. The shape signature is a one dimensional
function which is derived from shape boundary coordinates,
such as complex coordinates, curvature, centroid distance,
cumulative angular function, and so on. Independently of their
definition or the adopted signature [5], [7]–[9], [17], [19], the
main aim in defining effective descriptors is to have invariance
properties under transformations like translation, scaling, and
rotation [7]. However, the recent literature has shown the need
of defining descriptors able to have both local and global
properties, especially for applications in fields like medicine,
biology, cultural heritage [1], [18]. That is why methods
for combining properly such kind of descriptors have been
recently proposed [16]. In this paper, we look at the shape
description as a non linear approximation problem. Among
all the existing descriptors, we focus on Fourier descriptors,
as they allow a straightforward presentation of the proposed
method. Fourier description commonly consists of the expan-
sion of the shape signature in a Fourier basis and retaining
the first N coefficients, resulting in a linear approximation
problem [13]. As the literature on this topic proved, this kind
of approximation cannot be effective in the sense of sparsity
or compactness, since the N vectors are selected a priori,
without any information about the function under study. On
the contrary, non linear approximation selects the N elements
that better correlate the signal, i.e. its main features, meaning
that even very high frequency content may be selected if
relevant for the representation. Non linear approximation is
thus able to guarantee compactness of the representation and
faster convergence to the original signal with respect to L2

norm. As a result, an hierarchical definition of the set of
Fourier descriptors allows us to describe the shape through
its own main features, i.e. the most representative frequency
content, and to enable its recognition and characterization from
very few descriptors. The selection of the best number of
coefficients able to completely represent the shape, i.e. the
one providing a nearly zero approximation error, is a well
known but not trivial task in approximation theory. In fact, it
corresponds to select a proper threshold to apply to the sorted
moduli of the Fourier coefficients. In this paper we propose to
select this threshold in an automatic way by defining it as the
one maximizing the distance between two competing sets of
Fourier coefficients. More precisely, a formal relation between
the differential entropy of the transform and its sorted version
is derived; on the basis of this formal result, an entropic
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Fig. 1. Top: Plot of sorted absolute value of Fourier coefficients (left) of the
complex cartesian coordinates of the shape at the bottomleft of the figure; plot
of ENID as defined in (4) (right); the horizontal line indicates the threshold
value corresponding to maximum point of ENID. Bottom: Original shape
(left); recovered shape using the proposed method (right) — 25% of sorted
Fourier coefficients have been used.

interpretation of the normalized information distance (NID) [2]
is given. The hierarchical Fourier description is then defined
as the set of sorted (in decreasing order) moduli of the Fourier
coefficients such that it maximizes the entropic version of
NID when computed with respect to the remaining set of
coefficients. The proposed method is a first approach to coef-
ficients selection considering the problem in the framework of
information distance and Kolmogorov complexity. Preliminary
experimental results show that the proposed maximization
procedure is able to provide a nearly optimal and compact
shape representation which shows to have promising results
in retrieval-based applications. Indeed, the proposed method
is not limited to Fourier descriptors but can be understood in
the more general sense of selecting the most representative
coefficients in any hierarchical shape description.

The remainder of the paper is the following. Next section
presents the proposed model and the relative algorithm. Pre-
liminary experimental results in shape representation are then
presented in Section III along with some concluding remarks.

II. THE PROPOSED MODEL

The proposed model is based on the following strategy. The
2D shape contour is given in terms of Fourier descriptors.
Since we are interested in catching the shape main features,
Fourier descriptors are sorted. It is worth observing that sorted
Fourier descriptors preserve the invariance properties of the
classical Fourier descriptors. As Fig. 1 shows, sorted Fourier
descriptors are a composition of two consecutive decreas-
ing signals: the first one, whose domain is [0, x̃], usually
is strongly decreasing, while the second one ((x̃, x̄], where
x̄ is the total length of the signal) is slightly decreasing.
We are obviously interested in the first signal, composed of
those Fourier coefficients that convey the greater amount of
contour information. An entropic version of the Normalized

Information Distance (NID) [2], [12] is then proposed to
automatically find out x̃. Entropic NID is then maximized as
explained in the next section. Finally, it is worth outlining that
a new form of differential entropy is proposed in Prop. 1. The
advantage of using this form is that it is calculated in terms
of a sorted signal — that, in turn, is linked to its cumulative
distribution function.

A. Mathematical formulation

We give the definition of (continuous-time) sorting of a
function f . This definition is similar to the one in [6].

Def. 1 (Sorting of f ): Let f(t) : [0, x̄]→ R be a Riemann-
measurable, limited function and let Mf (y) be the cumulative
distribution function of f , that is, Mf (y) = meas({t : f(t) <
y}), where the measure used is the Riemann measure. Then
the sorting f̄ of f is the inverse of its cumulative distribution
function:

f̄(t) = (Mf )−1(t). (1)

A new form of differential entropy [4], written in terms of
sorted function, can be then given.

Prop. 1: Let f(t) : [0, x̄] → R be a continuous, differen-
tiable function. Then the following identity holds:

E[0,x̄] =
1

x̄

∫ x̄

0

ln(x̄f̄ ′(s))ds, (2)

where E[0,x] is the differential entropy of f and f̄(t) is the
continuous-time sorting of f .
Proof is in Appendix.

It is easy to generalize (2) to an arbitrary interval [x1, x2] ⊂
[0, x̄], i.e. E[x1,x2]. The latter depends on the sorting of the
restriction of f to the interval [x1, x2].

Before defining a new form of entropic NID in terms of
E[x1,x2], we give just a short description of the classical
Normalized Information Distance (NID), defined in [12]. It
measures the similarity of two data objects on the base of
the more general concept of Kolmogorov complexity. Given a
data object a, the Kolmogorov complexity K(a) of a is the
length of the shortest computer program that outputs a. More
precisely, NID is defined as

NID(a, b) =
max(K(a|b),K(b|a))

max(K(a),K(b))
, (3)

where K(a|b) is the generalized conditional Kolmogorov
complexity and represents the length of the shortest computer
program which outputs a given b. NID is a universal metric;
in addition, if two objects are similar with respect to a given
similarity metric, then they also are similar with respect to
NID. Even though NID is non-computable, it can be well
approximated by compression-based distances, like the Nor-
malized Compression Distance (NCD) [2]. The latter compares
the compressed version of the two objects. More precisely, it
measures how good the lossless compression algorithm C can
use the information given in one string to better compress
the other one and viceversa. Hence, NCD is a computable
version of NID in the sense that the lossless compressor C is
used for approximating the Kolmogorov complexity K. NCD
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is able to capture the dominant common information in all
pairwise comparisons and already gave high standard results
in hierarchical clustering [2]. The entropic NID, denoted by
ENID, is then defined:

Def. 2 (Entropic NID):

ENID(x) =
x̄E[0,x̄] −min(C1(x), C2(x))

max(C1(x), C2(x))
, (4)

where C1(x) = xE[0,x] and C2(x) = (x̄− x)E[x,x̄].
It is possible to prove that ENID has a unique maximum,
whose argument x̃ is the solution we are looking for. In
particular:

Prop. 2: Let f(t) : [0, x̄] → R such that f ∈
C1([0, x̄]), f ′(t) < 0, |f ′(x)| > e−1/x and |f ′(x)| >
e−1/(x̄− x) in [ε, x̄− ε]. Then

i) ∃! x̃ ∈ [ε, x̄− ε] : x̃ = argmaxxENID(X)

ii) ENID(x) ≥ 1. (5)

Taking into account that the first interval ([0, x̃]) and the
second one ((x̃, x̄]) can be seen as produced by two different
information sources, it is straightforward to see that the dif-
ference of the entropy of these two messages has a maximum
when x̃ correctly separates them — avoiding mixtures.

B. The Algorithm

Let (x(τ), y(τ)) the parametrized cartesian coordinates of
the analysed shape contours — τ is the parameter.
• Construct the complex signal s(t) = x(t) + iy(t)
• Compute the discrete Fourier Transform of s(t), and

denote it by f
• Sort |f |, the absolute value of f , in descending order. Let
f̄(t) be the sorted signal and x̄ its length

• ∀ x ∈ [0, x̄], compute ENID(x) as in (4)
• Select x̃ = argmaxxENID(x)
• Invert the discrete transform using the selected x̃ frequen-

cies while putting the others equal to zero and get the
approximation of s.

III. EXPERIMENTAL RESULTS AND CONCLUSIONS

The proposed method has been tested on different shapes.
In this section some results will be presented. The first test is
oriented to fix the accuracy of shape description given by a
hierarchical representation of Fourier coefficients with respect
to the classical method. Even though the result in terms of
MSE is theoretically predictable, this test aims at showing that
few sorted coefficients carry information related to corners or
some geometrical structures of the analysed shape allowing
a straightforward characterization of the single shape or the
class it belongs to. This property plays a fundamental role in
monitoring based applications as it can be concerned to some
pathologies at a very beginning state — fissures or cracks
in building of historical importance in cultural heritage or
spicular mass of various kinds of cancer in medicine. As Fig.
2 shows, the use of the first six Fourier coefficients allows
us to recognize the particular and distinctive geometric profile

Fig. 2. Original shape (left). Recovered shape using the first 6 Fourier de-
scriptors (middle). Recovered shape using the first 6 sorted Fourier descriptors
(right).

Fig. 3. Original shape (left). Recovered shape using the first 6 Fourier de-
scriptors (middle). Recovered shape using the first 6 sorted Fourier descriptors
(right). Two different shapes are shown.

of the analyzed shape. The same information is not gathered
using the same number of traditional Fourier descriptors; the
first 10 Fourier coefficients have to be retained for getting
comparable information. Fig. 3 shows similar results for two
different shapes. It is worth observing that, the linear selection
of 6 Fourier descriptors provides similar profiles, making
impossible to distinguish the two different shapes; on the
contrary, hierarchical Fourier coefficients are able to provide
this information. The second test is oriented to show that
the optimal number of coefficients that has been selected
using the proposed method, provides all the information
necessary to reconstruct the shape. The reconstructed images
are in fact very close to the original one — the discarded
information is really not informative, at least from the visual
point of view. Fig. 1 shows the original shape and the one
reconstructed using the output of the maximization procedure
presented in the previous section. As it can be observed,
there are not significant visual differences between the two
images. The same figure depicts the entropic NID and the
threshold value applied to the coefficients of the transform; as
it can be observes, 25% of coefficients allows us to recover
the shape with high precision — it corresponds to apply a
threshold value equal to 11.76 to the absolute value of Fourier
coefficients. Table I contains some results obtained for some
selected images having different features; the percentage of
retained coefficients and the reconstruction errors, measured in
terms of mean square error (MSE) between original image and
reconstructed one, are given. As it can be observed, less than
30% of coefficients allow us to recover the images with very
high precision. In addition, for more regular shapes, the error
is nearly zero. Table II contains the results obtained for shapes
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% 27.84 24.62 29.26 26.77 26.84 27.21(
71
255

) (
81
329

) (
91
311

) (
83
310

) (
84
313

) (
117
430

)
MSE 0.0000 0.0000 0.0000 0.0009 0.0001 0.0021

% 29.78 27.18 29.47 26.37 28.06 29.22(
187
628

) (
159
585

) (
160
543

) (
164
622

) (
211
752

) (
173
592

)
MSE 0.0020 0.0009 0.0028 0.0002 0.0003 0.0006

TABLE I
RESULTS IN TERMS OF % OF RETAINED FOURIER COEFFICIENTS AND
APPROXIMATION ERROR MEASURED IN TERMS OF MSE (4 DECIMAL

DIGITS) FOR DIFFERENT SHAPES. IN THE BRACKETS: NO. OF SELECTED
COEFFICIENTS VS SIGNAL LENGTH.

% 24.46 27.60 27.40 25.78
(80/327) (93/337) (97/354) (99/384)

MSE HFD 0.0011 0.0014 0.0009 0.0007
MSE FD 0.0027 0.0020 0.0012 0.0025

% 27.73 29.39 27.73 26.85
(127/458) (134/456) (160/577) (189/704)

MSE HFD 0.0007 0.0005 0.0019 0.0006
MSE FD 0.0012 0.0009 0.0049 0.0028

TABLE II
RESULTS IN TERMS % (NO. OF COEFFICIENTS/SIGNAL LENGTH) OF

RETAINED FOURIER COEFFICIENTS AND APPROXIMATION ERROR
MEASURED IN TERMS OF MSE (4 DECIMAL DIGITS) FOR SHAPES IN THE

SAME CLASS.

belonging to the same class. As it can be observed, the number
of selected coefficients is consistent with the complexity of the
shape; however, the percentage of selected frequencies is less
than 30%. The same table contains the approximation error
provided by selecting the same number of Fourier descriptors
for increasing frequency value (classical Fourier descriptors).
As it can be observed, reconstruction errors are higher in this
case. In addition, the more detailed the shape contour, the
better the precision provided by the proposed method. The
last test aims at a preliminary evaluation of the discriminative
properties of the proposed set of descriptors. Fig. 4 contains

Fig. 4. Images in the database closest to the shape in Fig. 1. For each shape
the optimal number of Fourier descriptors provided by the proposed method
have been considered.

the first 5 shapes in the analyzed database closest to the shape
in Fig. 1 — as it can be observed, 3 of them are in the same
class and the remaining 2, although not in the same class, have
high frequency content similar to the original image.

The proposed method is computationally advantageous as
the estimation of the optimal number of Fourier coefficients
requires simple and fast operations — 0.02 secs are required
on average in a not optimized MatLab implementation.

Future work will be devoted to extensive comparative
studies with the state of the art methods. The main aim
will be the use of the proposed entropy-based procedure
for the automatic selection of the best number of significant
descriptors, independently of the adopted shape signature.

IV. APPENDIX

Proof of Prop. 1 Given a probability distribution
function m(y) with support S, the differential entropy is

E = −
∫
S

m(y) ln(m(y))dy. (6)

The distribution of a function f is the derivative of the
cumulative distribution function given in Def. 1, normalized
by x. By setting y = f̄(t) in (6) and since df−1

dt = 1
df
dt

, we
have (2).

Proof of Prop. 2 Since f is monotonically decreasing,
then f̄(x) = f(x̄ − x) and f̄ ′(x) = |f ′(x̄ − x)|. By setting
u = x̄ − s, we obtain E[0,x] = x−1

∫ x

0
ln(x|f ′(u)|)du

and E[x,x̄] = (x̄ − x)−1
∫ x̄

x
ln((x̄ − x)|f ′(u)|)du. Hence

C ′1(x) = ln(ex|f ′(x)|) and C ′2(x) = − ln(e(x̄ − x)|f ′(x)|).
Since C ′1(x) > 0 and C ′2(x) < 0 ∀ x ∈ [ε, x̄− ε], C1(x) and
C2(x) are continuous by definition, C1(0) = 0 = C2(x̄) and
C1(x̄) = x̄E[0,x̄] = C2(0), there exists a point x̃ such that
C1(x̃) = C2(x̃). Hence, for x ∈ [ε, x̄− ε]/{x̃}, it holds:

d

dx
max(C1, C2)(x) = C ′2(x)χ[0,x̃)(x) +C ′1(x)χ(x̃,x̄](x) (7)

d

dx
min (C1, C2)(x) = C ′1(x)χ[0,x̃)(x) +C ′2(x)χ(x̃,x̄](x) (8)

Let us split (4) into I1(x) = x̄E[0,x̄]/max(C1(x), C2(x))
and I2(x) = −min(C1(x), C2(x))/max(C1(x), C2(x)).
Using (7), I1(x) is increasing before x̃ and
decreasing afterward, while using (8) we have

I ′2(x) = −
[(

C1(x)
C2(x)

)′
χ[0,x̃)(x) +

(
C2(x)
C1(x)

)′
χ(x̃,x̄](x)

]
, and

(C1(x)/C2(x))′ = −(C1(x)/C2(x))2(C2(x)/C1(x))′. Since
(C1(x)/C2(x))′ < 0 ⇔ C ′1(x)/C ′2(x) < 0 < C1(x)/C2(x),
I2(x) is increasing before x̃ and decreasing afterward, proving
the proposition.

With regard to the second part, it is easy to prove that

xE[0,x] + (x̄− x)E[x,x̄] ≤ x̄E[0,x̄]. (9)

Then we have

x̄E[0,x̄] ≥ min(C1(x), C2(x)) + max(C1(x), C2(x)). (10)

Hence, (5) follows.
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