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Abstract—This study aims to investigate the use of topological 
data analysis in electroencephalography (EEG) based on brain-
computer interface (BCI) applications. Our study focused on 
extracting topological features of EEG signals obtained from the 
motor cortex area of the brain. EEG signals from 8 subjects were 
used for forming data point clouds with a real-time simulation 
scenario and then each cloud was processed with JPlex toolbox 
in order to find out corresponding Betti numbers. These 
numbers represent the topological structure of the point data 
cloud related to the persistent homologies, which differ for 
different motor activity tasks. The estimated Betti numbers has 
been used as features in k-NN classifier to discriminate left or 
right hand motor intentions. 
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I. INTRODUCTION 
Brain-computer interfaces (BCIs) are used to help patients, 

who have less or no control over their motor neurons, such as 
ALS or lock-in syndrome patients [1]. BCIs interpret and 
extract meaningful information from the brain activity 
measurements that are related to motor activities, and help 
patients to regain their motor abilities or communicate with 
their environment [2]–[4]. BCI technology acquires brain 
activity information either directly from the patient’s brain 
cortex with multichannel electrodes (electrocorticography, 
ECoG) or over patient’s scalp surface with multichannel 
electrodes (electroencephalography, EEG) [5]. Until now, 
different BCI systems have been developed, such as moving 
the cursor on the screen, sending messages or turning lights on 
or off [6]–[10]. In this work, we will focus on EEG based BCIs 
due to their noninvasive nature. 

 Motor intention (MI) based BCIs aim to control or start an 
action by processing EEG signals and by extracting 
information during a voluntary movement intention period of 
extremities. A change in the EEG signals of the individual 
takes place before the actual motor activity begins [11]. MI 
based BCI systems widely use band power changes in specific 
frequency bands. Mu waves are specific brain waves that show 
up mostly at posterior, parietal and premotor cortex of the 

brain during resting [12], [13]. Mu waves oscillate between 7.5 
- 12.5 Hz and it dramatically decreases during motor intention 
or motor activity due to the desynchronization of neurons, 
which is called as the event related desynchronization (ERD) 
and indicates the motor intention activity [14]–[16]. Moreover, 
motor cortex neurons synchronize and lead to EEG signals 
oscillating between 15–30 Hz during the motor intention 
activity. The synchronization is referred to as the event related 
synchronization (ERS). The waves in this frequency range are 
beta waves [17], [18]. The power changes in the mu and beta 
bands are calculated and motor intention activity is detected in 
MI based BCI systems. However, this approach is very 
sensitive to noise components, and needs a preprocessing step.   

Topological data analysis (TDA) is one of the fastest 
developing branches of mathematics, which basically 
investigates geometric similarities of point clouds. TDA 
interpretations use different homology properties such as 
connectivity, surface, edge and volume [19]. This approach 
enables robust, fast and functional analysis of large datasets 
like EEG recordings [20], [21]. Fig. 1 shows how topological 
analysis interprets shapes. Topological parameters 
(connectivity, surface, hole etc.) are represented by special 
numbers called ‘Betti numbers’ ( n). For instance, the number 
of connected point groups (connectivity) is represented by 
Betti0 ( ), and the surfaces are represented by Betti1 ( ) 
numbers. Betti numbers are evaluated over time by Rips 
stream analysis [22]. This analysis shows persistency of Betti 
numbers and persistent homologies are used to determine point 
cloud shape. In this study, TDA is used for analyzing EEG 

This study is supported by Abdullah Gül University Scientific Research 
Projects Coordination Department. Project no: TOA-2015-31. 

 
Fig. 1. Example of a topological analysis. First three shapes (a, b, c) have the 

same topology, but last one (d) is topologically different from others. 
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signals to develop an alternative MI based BCI system due to 
its robustness to noise. 

II. MATERIAL AND METHODS 

A. Dataset and JPlex Toolbox 
In this study, an EEG dataset created by Graz University, 

Austria, for the BCI competition in 2008 was used [23]. This 
dataset is publicly available and includes EEG recordings of 8 
subjects. Each subject imagined 120 right and 120 left hand 
movements during the experiments. The imagination here is 
called “motor intention.” A total of 240 hand movement 
imaginations were acquired from each subject. EEG recordings 
were taken from the C3, Cz and C4 electrodes with a 250 Hz 
sampling rate. The electrodes were placed on the scalp of the 
subjects according to the international 10-20 system. The 
experimental paradigm started with a resting period of 3 
seconds, which was followed by a cue shown on the screen. 
The subject started to imagine a hand movement from the 4th 
to 7th second. A 2-second relaxation period was the final 
action in each trial. This paradigm was repeated by the subjects 
for all trials. 

EEG recordings were processed on MATLAB 2016a using 
JPlex toolbox [24]. JPlex is a specific toolbox, which was 
developed in order to perform persistent homology analysis on 
a given set of data. It has been used in many studies in the 
topological analysis field [25], [26]. 

B. Signal Processing 
As we know, each EEG channel contains one-dimensional 

(1-D) data, however, a multidimensional data is needed for 
forming a point cloud to be in topological data analysis [27]. 
Thus, a specific path was followed in order to create point 
clouds from the EEG signals of single electrode channel. 
Formation of the point cloud starts with the determination of 
the dimension of the point cloud. 

In our study, we used a moving window, whose width was 
equal to the predetermined dimension value, to form the point 
cloud. Each data sample within the window was used as the 

coordinate value of each dimension. Then, the window was 
shifted one sample to the right, and the same operation was 
repeated until the last sample on the signal. This technique is 
called ‘delay embedding’ [28], [29] and it enabled us to create 
multidimensional point cloud from 1-D data. Briefly, when the 
signal had N samples and the data cloud had D dimensions, the 
moving window had a D-sample width. The window started 
from the beginning of the signal, and the first sample 
corresponded to the first coordinate value, second sample 
corresponded to second coordinate value, and so on. Thus, a 
point in the space (point cloud) with D coordinate values was 
formed. Then, the window was shifted by one sample, and the 
second point was formed. By this way, N-D+1 points in the 
data cloud were formed from an N sample EEG channel with 1 
sample delay (1). Fig. 2 explains this procedure visually. 

Mcloud data Ddimension 

In this study we simulated a real-time BCI application by 
using a previously recorded multichannel EEG data. For this 
purpose, we processed 1-second data in each iteration and 
updated the data every 200 milliseconds. After obtaining the 
new chunk we again processed the last 1-second data in the 
next iteration. As it is mentioned in the previous section, the 
actual sampling rate was 250 Hz, thus the analysis began with 
the first 250 samples, and moved 50 samples in each iteration 
until it reached to end of the EEG data. This approach allowed 
us to analyze EEG signal epoch-wise, and thus, to observe any 
topological changes during the process.  

After the formation of the point cloud, the topological 
analysis began with the witness stream approach. In this 
approach, first we chose ‘L’ landmark points from ‘M’ points 

Fig. 3. Betti barcodes represent each individual topological shape. Lengths of 
the bars show their lifetime, and persistency of those homologies depends on 

length of these bars. 

Fig. 2. This figure represents the formation of three-dimensional point cloud, 
from a one-dimensional data. s1 to s16 are data samples. 
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of the point cloud and measured the points’ distribution in 
space. Then, these landmark points were assumed as spheres to 
start stream analysis. Their radii were increased by ‘lambda’ 
( ). The number of vertices, edges and holes were counted in 
each step, when the radiuses of landmark points were 
increased. These numbers were represented by Betti numbers 
[30]. Remaining points of the point cloud, besides the 
landmark points, witnessed every appearance and 
disappearance of edges and holes. Increasing the lambda value 
proceeded until all the landmarks cover 10% of the whole 
point cloud. This process was repeated on each epoch of the 
EEG signal, and the Betti numbers of each epoch represented 
persistent homology of that epoch. 

The EEG signals we used were processed by following this 
technique. Each channel (C3, Cz, C4) was analyzed separately. 
For each EEG channel, 1-second epochs with 800 ms overlap 
were formed, and 5, 6 and 7-dimensional point clouds were 
created using delay embedding for each epoch. Topological 
analysis of these epochs was completed with the witness 
stream technique explained above. Betti number evaluation of 
a single channel was shown as barcodes as shown in Fig. 3. 
Barcode graphics demonstrated the lambda values of the 
appearance and disappearance of every edge and hole. Longer 
bars indicated the persistency of the corresponding hole, which 
meant that there was important information. Because, the 
characteristic signals created more determined shapes in space, 
and they formed stronger homologies. On the other hand, the 
noise in the signal appeared and disappeared in shorter lambda 
periods, because they have inconsistent structure in space. 
Thus, shorter bars in barcode graphics mostly implied the 
noise. 

C. Feature Set and Classification 
The topological analysis of EEG signals returned Betti 

numbers corresponding to each epoch. These Betti numbers 
were used to create a feature set for each imagery hand 
movement trial. Betti numbers coming from the rest period 
were divided by the numbers coming from the imagery period, 
which served as features for EEG trials. For each subject, there 
were 120 right and 120 left hand imagery movement trials. 
Three different approaches were used for the construction of 
the feature set and each approach was evaluated separately. 
The first approach used ratios of Betti numbers computed 
during rest and imagery periods. The second approach used 
only the imagery period of the EEG recordings. The feature set 
was formed using average Betti number values of each 
imagery period of each imagery hand movement trial. The last 
approach used the Betti number ratios between C3 and C4 
channels during imagery hand movement periods and Cz 
channel excluded in the last approach. Then, the features 
obtained using these three approaches were combined and 
evaluated again.  

Feature sets were used as the input in MATLAB 
Classification Learner toolbox for classification. Left or right 
hand imagery movement was assigned a label as 0 or 1, 
respectively. A 10-fold cross-validation was performed, and all 
the classification methods available in this toolbox were 
investigated in the classification phase. However, only the 
accuracy results from the k-NN method were shared in this 

paper due to its good performance. Classification 
performances were converted using Cohen’s kappa conversion 
in order to compare our results [31], [32]. 

III. RESULTS 
Fig. 4 shows the performances for each subject separately 

obtained using three feature extraction methodologies 
mentioned above. Actually, the first approach followed a 
similar approach that is generally used for calculating 
ERD/ERS in EEG signals. However, in our work, we 
employed the Betti numbers instead of band power values. 
Thus, topological structure changes between periods were 
compared in order to detect hand movement imagination. The 
accuracies were mostly around 0.5 kappa.  

The second approach focused on the individual topological 
complexity of EEG of each electrode during motor imagery 
period. The combination of features obtained using two 
approaches explained above was used in order to increase the 
classification performance. The classification performances of 
three combinations (1 and 2, 1 and 3, 2 and 3) were shared in 
the Table I. Finally, all features were combined, and the 
classification performances were shown in Table I.  

The classification results of topological analysis of EEG 
signals showed that the EEG signals’ topological structure 
differs during imagination of motor activity. Fig. 4 shows that 
first and second approaches provide best results for the 
classification of the left and right hand imagery movements. 
The first approach used topological difference between resting 
state and imagery periods, and the results depicted that the 
topological features of the resting state and imagery periods 
were different. In addition, this approach showed that the 
difference in the ratio between resting state and imaginary 
period varied from channel to channel. It is known that mu and 
beta band powers change during motor activities, and the 
topological analysis showed that topological structure of EEG 
signals in space also changed during motor activities. 
However, the main difference here is that topological analysis 
does not need any preprocessing or filtering. 

Fig. 4. Results of each approach showed.  
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The results of the second approach indicated that the 
topological structure of imagery motor movement period was 
different for each channel. For example, if the subject 
imagined right hand movement, C3 and C4 channels that are 
related to the real or imagery right and left hand movements, 
respectively. When topological analysis was applied on both of 
these channels, the topological structure of the EEG signals 
coming from C3 differed from the structure from the C4. The 
combined feature sets using first and second approaches gave 
slightly better results obtained with the methods used alone.  

Finally, the results of the topological data analysis was 
compared with a motor intention band power based method 
[33]. 

Topological analysis approach resulted in better 
performances for detecting imagery hand movement from 
EEG signal. Fig. 5 shows that the classification performances 
increased for most of the subjects.  

IV. DISCUSSION AND CONCLUSIONS 
In this study, a new approach has been proposed to analyze 

EEG signals for the motor intention based BCIs. The study 
focused on differences and characteristics of EEG signals from 
a topological view. We developed a topological data analysis 
approach for extracting features from the signals and compared 
it with the band power based motor intention EEG analysis. 
EEG signals were taken from the channels that were the 
closest to the motor cortex of the brain.  

We should note that the point cloud formation is a crucial 
step for the TDA approach, since all the vertices and holes are 
formed according to the location of the points in the cloud. 
Proposed method allowed us to use 1-D signals for the data 
analysis. Moreover, there is no need for filtering or denoising 
before the point cloud formation. TDA method demonstrates 
high robustness and stability under the noisy perturbation of 
the data set. This is the main advantage of the topological data 
analysis method and it simplifies the signal processing 
dramatically.  

However, if the point cloud had high dimensional space, or 
the point cloud had too many points to analyze, then the 
evaluation of the point cloud slowed down exponentially. In 
addition, if the parameter lambda was increased to cover the 
whole point cloud space, the evaluation of that space, again, 
slowed down. Furthermore, these conditions required 
increased processing power in order to perform the topological 
analysis, due to design of the toolbox used in this study called 
JPlex. Although JPlex is the most recommended and reliable 
toolbox that is available for topological analysis, it still needs 
improvements for deeper analysis, but this was beyond the 
scope of our study.   

In this study, we showed that the topological analysis of 
EEG signals might provide valuable information for the BCIs. 
Topological analysis is a robust and insensitive method against 
noise, which eliminates the preprocessing step of the EEG 
signal analysis. Thus, it is possible to use topological analysis 
method for BCI systems, even though it is relatively slow 
when it is compared to band power based BCI systems. 

TABLE I.   

Subject 
No 

Kappa Values 
1-2 1-3 2-3 1-2-3 

B01T 0.77 0.66 0.53 0.75 

B02T 0.78 0.49 0.42 0.74 

B03T 0.27 0.20 0.18 0.24 

B04T 0.75 0.65 0.62 0.69 

B05T 0.62 0.48 0.45 0.66 

B06T 0.55 0.49 0.35 0.58 

B07T 0.77 0.70 0.48 0.65 

B09T 0.59 0.62 0.63 0.66 
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