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Abstract—A new blind estimator of the sampling
phase is proposed to support fractionally spaced equal-
ization in underwater digital links employing pulse
position modulation. Stemming from the relationship
between the “spikiness” of the channel impulse response
and the deviation from Gaussianity of the received
signal, the sampling phase is estimated by exploiting
non-Gaussianity measures offered by nonlinear statistics.
In particular, the fourth order (kurtosis) and the first
order nonlinear sample moments are considered and the
resulting receiver performance is analyzed.

Index Terms—Underwater, PPM, Fractional Sampling,
Channel Equalization

I. INTRODUCTION

Intersymbol interference (ISI) represents the main
impairment in wireless data links over multipath
channels. Reducing ISI becomes particularly compli-
cated in the context of underwater acoustic com-
munications (UWAC) where attenuation, noise and
multipath result in a large channel delay spread
severely degrading the received signal quality [1].

The easiest way to mitigate ISI is to introduce a
guard interval between consecutive emitted symbols
so to avoid symbols overlapping. On the other hand,
the consequent drawback is the communication rate
reduction, as the presence of large recovery times
makes the transmission essentially in stand-by. Fur-
thermore, although this solution may be reasonable
in RF-based technology, it becomes instead harmful
when dealing with UWAC where the transmission
rate is already penalized by nature as the speed of
sound is five orders of magnitude lower than the
speed of light.

An alternative solution to the use of guard time
is represented by digital filtering after sampling at
receiver side aimed at obtaining the channel equaliza-
tion condition. However, the introduction of an effi-
cient equalization scheme may significantly increase
the receiver software/hardware complexity. This is
an important aspect to take care of, since devices
employed in underwater applications are quite ex-
pensive and a good trade-off between performance
and computational cost is of paramount importance.

Channel equalization is necessary especially when
dealing with shallow water communications where
the multipath effect makes the received signal subject

to strong interference. Therefore suitable techniques
are requested in order to allow ISI cancellation. In
this regard, the typical underwater channel selectiv-
ity can be tackled by resorting to turbo equalization,
the effectiveness of which is recognized in both linear
and decision feedback approaches. Turbo equaliza-
tion finds use also in Multiple-Input Multiple-Output
single-carrier communications as reported in [2], [3].

A remarkable part of the works in literature
presents solutions based on the implementation of
Decision Feedback Equalizers (DFE) [4]. This kind of
nonlinear filtering is used when the signal distortion
caused by the channel can not be reliably mitigated
by linear equalizers. The fast convergence provided
by DFEs is paid in terms of computational cost
since the coefficients updating concerns two filters,
instead of a single filter as in the case of linear
equalization. An example of DFE applied to single-
carrier UWAC is reported in [5], where an iterative
frequency domain equalization combined with low
density parity check (LDPC) decoding is presented.

Another key element to consider when dealing
with ISI-affected communications is the proper se-
lection of the modulation scheme to be employed.
In this regard, Pulse Position Modulation (PPM) is
known to be particularly robust to ISI thanks to its
time-frequency properties. DFE in PPM-based com-
munications, even though not specifically related to
the underwater scenario, is introduced in [6].

As far as PPM is concerned, it is worth noting
that most of works reported in the literature deal
with filtering operated at chip time. This choice may
lead to a not-negligible and annoying time sensitivity
that, in addition to the undesired noise amplification
effect, impacts on the overall system performance.

This problem can be overcome by sampling the
received signal at rates greater than the nominal
one before filtering. This technique is known as
fractionally spaced channel equalization [7], and the
resulting filter is so-called fractionally spaced equal-
izer (FSE) [8]. Signal oversampling to obtain accu-
rate channel equalization is also diffused in other
fields such as terrestrial digital video broadcasting
services [9]. In this direction, an application of frac-
tionally spaced equalization in the underwater con-
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text is given in [10], where the authors propose an
improved version of the Recursive Least Squares-
Constant Modulus Algorithm (RLS-CMA) ruling a
FSE. In particular, a modified cost function of the
CMA is there introduced allowing both faster con-
vergence and computational cost reduction with re-
spect to the standard RLS-CMA. However, equalizer
performance strictly depends on the initial phase the
received fractionally sampled signal is locked to. In
fact, the sampling phase has to be chosen among
P possible ones when working with a fractional
sampling factor equal to P. The recognition of the
most suitable sampling phase allows the equalizer to
reach a faster convergence, and very often to avoid
misconvergence.

All the previous considerations motivated us in
investigating estimation techniques of the sampling
phase; in the sequel we present a novel blind estima-
tion technique based on nonlinear statistics directly
measured on the received signal.

II. MPPM WAVEFORM

Loosely speaking, the peculiarity of MPPM signals
is that each symbol is formed by M consecutive chips
of which one and only one is filled with a pulse while
the others are empty. The position of the filled chip
encodes the transmitted information.

To gain a deeper insight about the spectral struc-
ture of PPM induced by this signal peculiarity, we
will see how MPPM signals can be expressed as
particular PAM signals modulating a sequence of
suitably correlated binary samples.

To this purpose, let us consider the n-th string
sn = (boy b1ns---,by_1,) collecting the v = log, M
bits to be transmitted after a suitable mapping to
the corresponding MPPM symbol. This mapping is
operated as follows: i) denoting by j, the decimal
value of the binary number s;, the j,-th row of the
identity M-matrix I furnishes a M-tuple of binary
valued chips (cn[0],cn[l],...,cn[M—1]); ii) the n-th
MPPM discrete symbol is formed as follows:

M-1
cpppMm ] = Z cp|m] 6[n—m], n=0,1,...,M—1 (1)

m=0

The MPPM discrete symbol expression (1) properly
takes into account the fully-correlation existing be-
tween the M chip samples (c,[0],cu[1], ..., cn[M—1]),
M—1 of which are equal to 0 and the remaining to 1.

Using (1), we can form a binary stochastic se-
quence that accounts for all the discrete symbols of
a MPPM signal:

+o00
byepm[n] = ) evppm(n — kM| 2)

k=—c0

For equiprobable bits, the direct component (DC) and
the power of the sequence byppyp[1] are:

1
(DC)  Muyppm =

i 3)
M—1

— @)
The analog MPPM signal is then formed by interpo-

lating the binary sequence by ppyp[1] with a shaping
pulse g, (t) whose duration equals the chip-time T:

(Power) Pumpprm =

“+o00
smepm(t) = Y buppm[n] g (t—nTe) ()
n=-—oo

Since each MPPM symbol if formed by M consecu-

tive chips, the symbol-time is T; =M T.
The form (5) is particularly interesting since it
allows a relatively simple derivation of the Power
Spectral Density (PSD) of the analog MPPM signal:

Poyipra () = |Gr(jQ) Poyygpy (€77)  (6)

In (6), Gr(jQ) is the Fourier Transform of g, (¢), and
Py opy (€°) is the PSD of the discrete binary random
sequence of the MPPM symbols byppm[n], whose
expression, calculable as indicated in [13] or in a

more simple fashion as indicated in [14], is:
P (ejw) — i 1 — |22 4
bueem M Msin(w/2)

2]
2mr
+ W Z 5(60*27‘(]()

k=—c0

sin(wM/2)

As shown in Fig.1l, the PSD (6) reveals the rich
spectral redundancy possessed by the MPPM signal.

ASK-QAM

Gr(jQ) P
| Gr (G| bandwidth 27zcz

jor,
b}\JT’PM (e )

—81 —6m —4x —2x O 27 4w 6m  8m
L

PPM bandwidth
Figure 1. MPPM power spectral density.

Generally speaking, due to the large bandwidth of
the pulse g, (t), the MPPM signal presents a sort of
redundancy that consists in a special kind of spectral
repetition coding. To outline the MPPM signal redun-
dancy, in Fig.1 we have also indicated the bandwidth
occupied by shaping pulse used in transmitting the
chip sequence bpppm[n] by Amplitude Shift Keying
(ASK) or Quadrature Amplitude Modulation (QAM)
techniques; we observe that also ASK-QAM realizes
spectral repetition coding but only in the very small
band determined by the roll-off factor a, precisely
of width a/T, around half the symbol rate 1/2T..
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We believe that Fig.1 offers a somewhat novel and
interesting way to understand the well-known ISI
robustness vs. transmission rate trade-off of PPM
based signaling.

Moreover, since byppm[n] is a binary sequence,
the MPPM signal form (5) suggests that equalization
schemes developed for ASK-QAM based communi-
cations can be fruitfully employed also in MPPM
based communications. In particular, in [15] we
have developed a somewhat novel blind fractionally
spaced equalization scheme that properly takes into
account the probabilistic description of the colored

sequence by ppm [1].

III. MPPM RECEIVER

After matched filtering at receiver side we have
the signal, see also Fig.2:

“+o00
r(t)= Y byppm[n] g(t —nTe) + (wxg)(t) (8)
n=—oo

where g(t) = (g; *h % g.)(t) is the overall im-
pulse response that accounts for the matched filter
g: (1) =g,(—t) as well as the channel h(t), and w(t)
denotes independent additive noise observed before
the matched filter.

byppmln] oy

gr(®) ar® }— r@®

T,|

c

w(t)

Figure 2. Chip based PPM transmission scheme.

The large bandwidth occupied by the MPPM signal,
see Fig.1, can be usefully exploited through frac-
tional sampling of r(t) operating at rate P/ T,, where
the fractional sampling integer factor P can assume
values significantly greater than 1; for instance, the
numerical results later presented in Sect.V have been
obtained using P=9.

As depicted in Fig.3, a FSE is a digital filter that
operates on samples of r(t) taken at rate P/ T, while
yielding outputs at rate 1/ T; indicating with f [k] the
impulse response of a FIR FSE of order L, the binary
MPPM equalized sequence is:

bln] = f FIKF(nT. — kT./P—koT./P)  (9)
k=0

In (9), ko denotes the sampling phase and takes value
in the set N(P)={0,1,...,P—1}.

®

0 X Hm
I
P

byppmln]

Py

Figure 3. Chip based fractionally spaced equalization.

The following remarks are in order:

1) the choice of kg is not obvious;

2) different values of kg lead to different fraction-
ally sampled overall channel impulse responses
g((k—ko)Tc/P), so the “difficulty” encountered
by any FSE, and the consequent performance
loss, is significantly influenced by ko;

3) the success of a blind FSE is almost entirely due
to an opportune choice of k.

IV. BLIND FRACTIONAL SAMPLING PHASE
ESTIMATION

In the following, the problem of fractional sam-
pling phase kg estimation is addressed. In detail, the
goal is to recognize the phase ko that maximizes the
spikiness of the fractionally sampled overall channel
impulse response g((k—kg)Tc/P). In fact, spikiness
simply means that g((k—ko)Tc/P) exhibits a rela-
tively small number of large coefficients and it is
expected that the chances of channel equalization
grow as the channel spikiness becomes more marked.

The estimation technique here developed is blind
since it directly operates on the received samples
r((k—ko)/T;) without any knowledge about the
channel impulse response h(t). Stemming from the
convolution summation in (8), the following con-
sideration is in order: the more the spikiness of
the deterministic sequence ((k—ko)T./P), the more
the deviation from Gaussianity of the stochastic
sequence r((k—ko)Tc/P). Then, spikiness and non-
Gaussianity go hand in hand, and any measures of
non-Gaussianity of r((k—kg)/Tc) can be taken as a
measure of spikiness of g((k—ko)T./P).

Here we have considered two nongaussianity mea-
sures offered by suitable NonLinear Statistics (NLS)
calculated through sample averaging of N observed
samples r((k—ko) T/ P), specifically:

fourth order (sample kurtosis):

104, ((kko)Tc>

N = P
K (ko) = ——=2 > —3
[1 o ((kkom)]
N = P
first order:
1 R (kikO)Tc
= ) (e
S k) == ( - >‘1
1IN S (k=Ko Te r
NEP ()

The estimation of the fractional sampling phase is
conducted as follows:

kM = g min K(k 10
0 = NP (ko) (10)
N g m S(k 11
0 an koE]IiiI(XP) ( O) ( )
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V. NUMERICAL RESULTS

Numerical results refer to the typical underwater
multipath channel as that one used in [16], whose
parameter values are found in Tab.I:

7
h(t) = Z Ard(t— 1)
k=0
In [16] the channel (12) is used in the band of
width 8kHz around the center frequency fo=4kHz,
so that we have employed the following band-pass
transmitting pulse with a bell shaped envelope:

¢ ()= Aexp(—12/2p?) (cos (2tfot) —sin(2fot))

The value B = T./4 fixes the pulse duration to be
approximatively equal to T, and at the same time
fixes the bandwidth B ~ 8/T,, so that T, = Ims yields
just B=_8kHz.

The fractional sampling factor has been chosen
equal to P =9, i.e. the minimum one that still al-
lows to fully exploit the spectral redundancy offered
by the MPPM signal. In the case M = 2, Figs.4
and 5 show the three best values S(kg) and K (ko)
measured with N = 5120 and calculated over 100
independent MonteCarlo runs.

We observe that the sample kurtosis yields lAcgc) =5
with frequency 88%, while the first order sample mo-
ment yields IQE)S) =5 with frequency 61%; moreover,
the best three values obtained by the sample kurtosis
are concentrated around the best one l%gc) =5, while
this occurrence is not verified when using the first
order sample moment. The compactness shown by
sample kurtosis estimation makes it preferable since,
as observed in [15], blind fractionally spaced equal-
ization is generally very sensitive with respect to the
sampling phase choice.

This result has been returned also when consider-
ing the same multipath channel (12), but now fur-
ther smoothed by the convolution with a Hamming
window of duration 8.3ms. The estimates obtained
in this more challenging, from the equalization point
of view, scenario are shown in Figs.6 and 7.

For the same channel analyzed in Figs.6-7 we
observed the misconvergence rates reported in Tab.II.

As said before, the choice of the sampling phase
can severely affect the performance of blind FSEs.
In particular, we have implemented the fractional
scheme depicted in Fig.3 in a blind fashion using
the well know Constant Modulus Algorithm (CMA)
[17],[18],[19].

(12)

ICMA belongs to the more general class of Bussgang equaliza-
tion algorithms [20], so-called because of convergence is reached
when the equalized sequence satisfies the Bussgang invariance
property [21]; generalization of Bussgang invariance are found in
[22], [23].

Table I
MULTIPATH CHANNEL PARAMETERS.

k Ak Te (ms)

0 | 0.808 0

1 1.0 18.6

2 | 0.796 30.0

3 | 0461 59.3

4 | 0.522 61.0

5 | 0.831 62.9

6 | 0.421 91.3

7 | 0.725 107.9
0.94 -
0.92 _NLS First Order Phase 4

—— Phase 5
0.90 - —— Phase 8
0.88
0.86
0.84
0.82
runs

0.80

0 10 20 30 40 50 60 70 80 90 100

Figure 4. The three best S(ky) values obtained for to kg =4,5,8.
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24 r —— Phase 5
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22
20
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Figure 5. The three best K(ko) values obtained for to kg =4,5,6.
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Figure 6. The three best S(ky) values obtained for to ky=0,7,8.
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Figure 7. The three best K(ko) values obtained for to kg =0,5,8.
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In this case sample kurtosis yields l%gc ) =7,8,0 respec-
tively with frequencies 24%,44%,30%, i.e. only the
2% of the times a different sampling phase is selected;
on the other hand, the first order sample moment
selects IQE)S) = 7,8,0 respectively with frequencies
16%,28%,21%, i.e. the 35% of the times a different
sampling phase is recognized to be the best one.
Table II

MISCONVERGENCE PERCENTAGE OBSERVED IN CMA BASED
FRACTIONALLY SAMPLED EQUALIZATION.

misconvergence percentage
15%
11%
5%

o oo 3|

The results shown in Tab.II indicate that more robust
blind FSE cost functions shall be investigated to deal
with the equalizer sensitivity to the sampling phase
choice.

VI. CONCLUSION

In this contribution a novel blind estimation tech-
nique of the sampling phase that drives a frac-
tionally spaced equalizer operating in MPPM based
digital transmission scenarios has been presented.
Specifically, stemming from the equivalence spiked-
channel/mon-Gaussian-signal, the sampling phase can
be selected using non-Gaussianity measures offered
by nonlinear statistics.

In particular, two nonlinear sample moments have
been considered and numerically analyzed, namely
the fourth order (kurtosis) and the first order ones.

Numerical results have shown that the kurtosis
based estimation is robust because the estimated
sampling phase is selected within a set of three
consecutive values; such a behavior is very important
since the performance of blind fractionally spaced
equalizers is severely affected by the choice of the
sampling phase.
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