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Abstract—We propose a non-parallel voice-conversion (VC)
method that can learn a mapping from source to target speech
without relying on parallel data. The proposed method is
particularly noteworthy in that it is general purpose and high
quality and works without any extra data, modules, or alignment
procedure. Our method, called CycleGAN-VC, uses a cycle-
consistent adversarial network (CycleGAN) with gated convolu-
tional neural networks (CNNs) and an identity-mapping loss. A
CycleGAN learns forward and inverse mappings simultaneously
using adversarial and cycle-consistency losses. This makes it
possible to find an optimal pseudo pair from non-parallel data.
Furthermore, the adversarial loss can bring the converted speech
close to the target one on the basis of indistinguishability
without explicit density estimation. This allows to avoid over-
smoothing caused by statistical averaging, which occurs in many
conventional statistical model-based VC methods that represent
data distribution explicitly. We configure a CycleGAN with gated
CNNs and train it with an identity-mapping loss. This allows
the mapping function to capture sequential and hierarchical
structures while preserving linguistic information. We evaluated
our method on a non-parallel VC task. An objective evaluation
showed that the converted feature sequence was near natural
in terms of global variance and modulation spectra, which are
structural indicators highly correlated with subjective evaluation.
A subjective evaluation showed that the quality of the converted
speech was comparable to that obtained with a Gaussian mixture
model-based parallel VC method even though CycleGAN-VC is
trained under disadvantageous conditions (non-parallel and half
the amount of data).

Index Terms—voice conversion, non-parallel conversion, gen-
erative adversarial networks, CycleGAN, gated CNN

I. INTRODUCTION

Voice conversion (VC) is a technique to modify non/para-
linguistic information of speech while preserving linguistic
information. This technique can be applied to various tasks
such as speaker-identity modification for text-to-speech sys-
tems [2], speaking assistance [3]–[5], emotion/expressiveness
conversion [6], [7], and pronunciation conversion [8].

Voice conversion can be formulated as a regression problem
of estimating a mapping function from source to target speech.
One successful approach involves statistical methods using
a Gaussian mixture model (GMM) [9]–[11]. Neural network
(NN)-based methods, such as a restricted Boltzmann machine
(RBM) [12], [13], feed forward NN [14]–[16], recurrent NN
(RNN) [17], [18], convolutional NN (CNN) [8], and generative
adversarial network (GAN) [8], and exemplar-based methods,
such as non-negative matrix factorization (NMF) [19], [20],
have also recently been proposed.

1A preprint version of this paper has already been shared publicly [1].

Many VC methods including those mentioned above typ-
ically use temporally aligned parallel data of source and
target speech as training data. If perfectly aligned parallel
data are available, obtaining the mapping function becomes
relatively simple; however, collecting such data can be a
painstaking process in real application scenarios. Even though
we could collect such data, we need to perform automatic
time alignment, which may occasionally fail. This can be
problematic since misalignment involved in parallel data can
cause speech-quality degradation; thus, careful pre-screening
and manual correction may be required [21].

These facts motivated us to consider a VC problem that
does not rely on parallel data. In this paper, we propose a
non-parallel VC method, which is particularly noteworthy in
that it (1) does not require any extra data, such as transcripts
and reference speech, and extra modules, such as an automatic
speech-recognition (ASR) module, (2) is not prone to over-
smoothing, which is known to be one of the main factors
leading to speech-quality degradation, and (3) captures a
spectrotemporal structure without any alignment procedure.

To satisfy these requirements, our method1, called
CycleGAN-VC, uses a cycle-consistent adversarial network
(CycleGAN) [22] (i.e., DiscoGAN [23] or DualGAN [24])
with gated CNNs [25] and an identity-mapping loss [26]. The
CycleGAN was originally proposed for unpaired image-to-
image translation. With this model, forward and inverse map-
pings are simultaneously learned using an adversarial loss [27]
and cycle-consistency loss [28]. This makes it possible to
find an optimal pseudo pair from non-parallel data. Further-
more, the adversarial loss can bring the converted speech
close to the target one on the basis of indistinguishability
without explicit density estimation. This allows to avoid over-
smoothing caused by statistical averaging [8], [16], [29]–[31],
which occurs in many conventional statistical model-based
VC methods that represent data distribution explicitly (e.g.,
Gaussian distribution). To use a CycleGAN for non-parallel
VC, we configure a network using gated CNNs and train
it with an identity-mapping loss. This allows the mapping
function to capture sequential and hierarchical structures while
preserving linguistic information.

We evaluated our method on a non-parallel VC task
using the Voice Conversion Challenge 2016 (VCC 2016)
dataset [32]. An objective evaluation showed that the converted
feature sequence was near natural in terms of global variance
(GV) [10] and modulation spectra (MS) [33], which are struc-
tural indicators highly correlated with subjective evaluation.
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A subjective evaluation showed that the speech quality was
comparable to that obtained with a GMM-based parallel VC
method [10] even though CycleGAN-VC is trained under
disadvantageous conditions (non-parallel and half the amount
of data). Although the GMM-based VC method is not state-
of-the-art, these results are noteworthy because to the best of
our knowledge, there was still a gap between the quality of
previous non-parallel VC and GMM-based parallel VC.

This paper is organized as follows. In Section II, we describe
related work. In Section III, we review the CycleGAN and
explain our proposed method (CycleGAN-VC ). In Section IV,
we report on the experimental results. In Section V, we provide
a discussion and conclude the paper.

II. RELATED WORK

Recently, several approaches for non-parallel VC have been
proposed. One approach involves using an ASR module to
find a pair of corresponding frames [34], [35]. This may work
well if ASR performs robustly and accurately enough, but
it requires a large amount of transcripts to train the ASR
module. It would also be inherently difficult to capture non-
verbal information that is an important factor for several VC
tasks. Other approaches involve methods using an adaptation
technique [36], [37] or incorporating a pre-constructed speaker
space [38], [39]. These methods do not require parallel data
between source and target speakers but require parallel data
among reference speakers. A few attempts [40]–[43] have
recently been made to develop methods that are completely
free from parallel data and extra modules, similarly to ours.
With these methods, it is assumed that source and target speech
lie in the same low-dimensional embeddings. This would not
only limit applicable data but also the converted data tend to
lose detailed structures through embedding. In contrast, we
learn a mapping function directly without embedding. This
would make our method a general-purpose solution for various
VC tasks. We note that generally speaking, there is still a gap
between the quality of parallel and non-parallel VC, and
further studies are needed in this field.

III. NON-PARALLEL VC USING CYCLEGAN

A. CycleGAN

Our goal is to learn a mapping from source x ∈ X to target
y ∈ Y without relying on parallel data. We solve this problem
based on a CycleGAN [22]. With CycleGAN, a mapping
GX→Y is learned using two losses, namely an adversarial
loss [27] and cycle-consistency loss [28]. We illustrate the
training procedure in Fig. 1.

Adversarial loss: An adversarial loss measures how dis-
tinguishable converted data GX→Y (x) are from target data y.
Hence, the closer the distribution of converted data PGX→Y

(x)
becomes to that of target data PData(y), the smaller this loss
becomes. This objective is written as

Ladv(GX→Y , DY ) = Ey∼PData(y)[logDY (y)]

+Ex∼PData(x)[log(1−DY (GX→Y (x)))]. (1)

The generator GX→Y attempts to generate data that can
deceive the discriminator DY by minimizing this loss, whereas

(a) Forward-inverse mapping (b) Inverse-forward mapping
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Fig. 1. Training procedure of CycleGAN

DY attempts not to be deceived by GX→Y by maximizing this
loss.

Cycle-consistency loss: Optimizing only the adversarial
loss would not necessarily guarantee that the contextual in-
formation of x and GX→Y (x) will be consistent. This is
because the adversarial loss only tells us whether GX→Y (x)
follows the target-data distribution and does not help preserve
the contextual information of x. The idea of CycleGAN [22] is
to introduce two additional terms. One is an adversarial loss
Ladv(GY→X , DX) for an inverse mapping GY→X and the
other is a cycle-consistency loss, given as

Lcyc(GX→Y , GY→X)

= Ex∼PData(x)[‖GY→X(GX→Y (x))− x‖1]
+ Ey∼PData(y)[‖GX→Y (GY→X(y))− y‖1]. (2)

These additional terms encourage GX→Y and GY→X to find
(x, y) pairs with the same contextual information.

Full objective: The full objective is written with trade-off
parameter λcyc:

Lfull = Ladv(GX→Y , DY ) + Ladv(GY→X , DX)

+ λcycLcyc(GX→Y , GY→X). (3)

B. CycleGAN for Non-parallel VC: CycleGAN-VC

To use a CycleGAN for non-parallel VC, we mainly
made two modifications to the CycleGAN architecture: gated
CNN [25] and identity-mapping loss [26].

Gated CNN: One of the characteristics of speech is
that it has sequential and hierarchical structures, e.g.,
voiced/unvoiced segments and phonemes/morphemes. An ef-
fective way to represent such structures would be to use
an RNN, but it is computationally demanding due to the
difficulty of parallel implementations. Instead, we configure
a CycleGAN using gated CNNs [25] that not only allow
parallelization over sequential data but also achieve state-of-
the-art in language modeling [25] and speech modeling [8].
In a gated CNN, gated linear units (GLUs) are used as an
activation function. A GLU is a data-driven activation function,
and the (l + 1)-th layer output Hl+1 is calculated using the
l-th layer output Hl and model parameters Wl, Vl, bl, and cl,

Hl+1 = (Hl ∗Wl + bl)⊗ σ(Hl ∗ Vl + cl), (4)

where ⊗ is the element-wise product and σ is the sigmoid
function. This gated mechanism allows the information to be
selectively propagated depending on the previous layer states.

Identity-mapping loss: A cycle-consistency loss provides
constraints on a structure; however, it would not suffice
to guarantee that the mappings always preserve linguistic
information. To encourage linguistic-information preservation
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Fig. 2. Network architectures of generator and discriminator. In input or output layer, h, w, and c represent height, width, and number of channels, respectively.
In each convolutional layer, k, c, and s denote kernel size, number of channels, and stride size, respectively. Since generator is fully convolutional [44], it
can take input of arbitrary length T .

without relying on extra modules, we incorporate an identity-
mapping loss [26],

Lid(GX→Y , GY→X) = Ey∼PData(y)[‖GX→Y (y)− y‖1]
+ Ex∼PData(x)[‖GY→X(x)− x‖1], (5)

which encourages the generator to find the mapping that pre-
serves composition between the input and output. In practice,
weighted loss λidLid with trade-off parameter λid is added to
Eq. 3. Note that the original study on CycleGANs [22] showed
the effectiveness of this loss for color preservation.

IV. EXPERIMENTS

A. Experimental Conditions
We evaluated our method on a non-parallel VC task using

the VCC 2016 dataset [32], which was recorded by profes-
sional US English speakers, including five females and five
males. Following a previous study [41], we used a subset
of speakers for evaluation. A pair of female (SF1) and male
(SM1) speakers were selected as sources and another pair (TF2
and TM3) were selected as targets. The audio files for each
speaker were manually segmented into 216 short parallel sen-
tences (about 13 minutes). Among them, 162 and 54 sentences
were provided as training and evaluation sets, respectively. To
evaluate our method under a non-parallel condition, we divided
the training set into two subsets without overlap. The first half
81 sentences were used for the source and the other 81 sen-
tences were used for the target. This means that CycleGAN-
VC is trained under the disadvantageous condition (non-
parallel and half the amount of data). The speech data
were downsampled to 16 kHz, and 24 Mel-cepstral coefficients
(MCEPs), logarithmic fundamental frequency (logF0), and
aperiodicities (APs) were then extracted every 5 ms using
the WORLD analysis system [45]. Among these features, we
learned a mapping in the MCEP domain using our method.
The F0 was converted using logarithm Gaussian normalized
transformation [46]. Aperiodicities were directly used with-
out modification because a previous study [47] showed that
converting APs does not significantly affect speech quality.

Implementation details: We designed a network based
on the recent success in image modeling [22], [48], [49]
and speech modeling [8], [29]. The network architecture is
illustrated in Fig. 2. We designed the generator using a one-
dimensional (1D) CNN [8] to capture the relationship among
the overall features while preserving the temporal structure.
Inspired by a previous study [49] for neural style transfer
and super-resolution, we used the network that included
downsampling, residual [50], and upsampling layers, as well
as incorporating instance normalization [51]. We used pixel
shuffler for upsampling, which is effective for high-resolution

(a) Intra-gender (SF1-TF2) (b) Inter-gender (SM1-TF2)

Target

CycleGAN-VC w/ GLU

CycleGAN-VC w/o GLU

GMM-VC w/o GV

G
V

Index of Mel-cepstral coefficient

Target

CycleGAN-VC w/ GLU

CycleGAN-VC w/o GLU

GMM-VC w/o GV

Index of Mel-cepstral coefficient

G
V

Fig. 3. Comparison of GV per MCEP. We omit GMM-VC w/ GV because
it directly estimates GV.

(a) 12th Mel-cepstrum (SF1-TF2) (b) 22nd Mel-cepstrum (SF1-TF2)
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Fig. 4. Comparison of MS per modulation frequency

image generation [48]. We designed the discriminator using a
2D CNN [8] to focus on a 2D spectral texture [29].

Training details: As a pre-process, we normalized the
source and target MCEPs per dimension. To stabilize training,
we used a least squares GAN [52], which replaces the negative
log likelihood objective in Ladv by a least squares loss. We
set λcyc = 10. We used Lid only for the first 104 iterations
with λid = 5 to guide the learning process. To increase the
randomness of each batch, we did not use a sequence directly
and cropped a fixed-length segment (128 frames) randomly
from a randomly selected audio file. We trained the network
using the Adam optimizer [53] with a batch size of 1. We
set the initial learning rates to 0.0002 for the generator and
0.0001 for the discriminator. We kept the same learning rate
for the first 2×105 iterations and linearly decay over the next
2× 105 iterations. We set the momentum term β1 to 0.5.

B. Objective Evaluation
In these experiments, we focused on the conversion of

MCEPs; therefore, we evaluated the quality of converted
MCEPs. We compared our method (CycleGAN-VC ) with a
GMM-based parallel VC method (GMM-VC ) [10]. Although
GMM-VC is not a state-of-the-art method, we consider that it
is a reasonable baseline because to the best of our knowledge,
there was still a gap between the quality of previous
non-parallel VC and GMM-VC . Since this method requires
parallel data, all the training data (162 sentences) for both
source and target were used. This means that CycleGAN-
VC is trained under the disadvantageous condition (non-
parallel and half the amount of data). As an ablation study,
we examined CycleGNA-VC without GLUs. Instead of GLUs,
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TABLE I
COMPARISON OF RMSE BETWEEN TARGET AND CONVERTED

LOGARITHMIC MS AVERAGED OVER ALL MCEPS AND MODULATION
FREQUENCIES [DB]. SMALL VALUE INDICATES CLOSENESS TO TARGET.
Method SF1–TF2 SF1–TM3 SM1–TF2 SM1–TM3
CycleGAN-VC w/ GLU 1.98 2.69 1.93 2.14
CycleGAN-VC w/o GLU 3.34 2.99 3.17 2.94
GMM-VC w/ GV 7.59 9.41 8.69 9.67
GMM-VC w/o GV 13.56 14.90 14.17 14.53

Source

CycleGAN-VC w/ GLU

CycleGAN-VC w/o GLU

GMM-VC w GV

GMM-VC w/o GV

Source

CycleGAN-VC w/ GLU

CycleGAN-VC w/o GLU

GMM-VC w GV

GMM-VC w/o GV

Fig. 5. Comparison of MCEP trajectories (SF1-TM3)

we used typical GAN activation functions, i.e., rectified linear
units (ReLUs) [54] for the generator and leaky ReLUs [55],
[56] for the discriminator. In the pre-experiment, we also
examined CycleGAN-VC without an identity-mapping loss.
This revealed that the lack of this loss tends to cause significant
degradation, e.g., collapse of the linguistic structure.

Mel-cepstral distortion is a well-used measure to evaluate
the quality of synthesized MCEPs, but recent studies [10],
[29], [43] indicate the limitation of this measure: it tends to
prefer over-smoothing because it internally assumes Gaussian
distribution. Therefore, as alternatives, we used two struc-
tural indicators highly correlated with subjective evaluation:
GV [10] and MS [33]. We show the comparison of GV in
Fig. 3. We list the comparison of root mean squared error
(RMSE) between target and converted logarithmic MS in
Table I. We also show the comparison of MS per modulation
frequency in Fig. 4. These results indicate that the MCEP
sequences obtained with CycleGAN-VC w/ GLU are closest to
the target in terms of GV and MS. We expect this is because
(1) the adversarial loss contributes to avoiding over-smoothing,
and (2) the GLU succeeds in representing sequential and
hierarchical structures better than the ReLU and leaky ReLU.
We show sample MCEP trajectories in Fig. 5. The trajectories
of CycleGAN-VC w/ GLU have a similar global structure to
those of GMM-VC w/ GV while preserving similar complexity
to the source.

C. Subjective Evaluation
We conducted listening tests to evaluate the performance

of converted speech2. By referring to the VCC 2016 [57],
we evaluated the naturalness and speaker similarity of the
converted samples. We compared our method with the official
baseline of the VCC 2016 (VCC-VC)3. This is a GMM-
based method [10] and trained using all the training data.
To measure naturalness, we conducted a mean opinion score
(MOS) test. As a reference, we used original (Org) and re-
synthesized (Resyn; upper bound of our method) speeches of

2We provide the converted speech samples at http://www.kecl.ntt.co.jp/
people/kaneko.takuhiro/projects/cyclegan-vc/

3We used data at http://dx.doi.org/10.7488/ds/1575

(a) Intra-gender (SF1-TF2) (b) Inter-gender (SF1-TM3)

Org Resyn VCC Org Resyn VCCCyc Cyc

Fig. 6. MOS for naturalness with 95% confidence intervals (Org: Original,
Resyn: Re-synthesized, Cyc: CycleGAN-VC (proposed), and VCC: VCC-VC)

(a) Intra-gender (SF1-TF2) (b) Inter-gender (SF1-TM3)
Similarity to Src Similarity to Tgt Similarity to Src Similarity to Tgt

Different:
Absolutely sure

Different:
Not sure

Same:
Not sure

Same:
Absolutely sure

Src Tgt Cyc VCC SrcTgt Cyc VCC Src TgtCyc VCC SrcTgt CycVCC

Fig. 7. Similarity to source speaker and to target speaker (Src: Source, Tgt:
Target, Cyc: CycleGAN-VC (proposed), and VCC: VCC-VC)

target speakers. Twenty sentences longer than 2 s and shorter
than 5 s were randomly selected from the evaluation sets.
To measure speaker similarity, we used the same/different
paradigm [57]. Ten sample pairs were randomly selected from
the evaluation sets. There were nine participants who were
well-educated English speakers. By referring to the study
by [43], we evaluated on two subsets: intra-gender VC (SF1–
TF2) and inter-gender VC (SF1–TM3). We show the MOS for
naturalness in Fig. 6. The results indicate that CycleGAN-VC
significantly outperformed VCC-VC. We show the similarity
to a source speaker and to a target speaker in Fig. 7. The
results indicate that CycleGAN-VC was slightly inferior to
the VCC-VC in SF1–TM3 but superior in SF1–TF2. Overall,
CycleGAN-VC is comparable to VCC-VC. This is noteworthy
because CycleGAN-VC is trained under disadvantageous
conditions (non-parallel and half the amount of data).

V. DISCUSSION AND CONCLUSIONS

We proposed a non-parallel VC method called CycleGAN-
VC, which uses a CycleGAN with gated CNNs and an
identity-mapping loss. This method can learn a sequence-
based mapping function without any extra data, modules, and
time alignment procedure. An objective evaluation showed
that the MCEP sequences obtained with CycleGAN-VC are
close to the target in terms of GV and MS. A subjective
evaluation showed that the quality of converted speech was
comparable to that obtained with the GMM-based parallel
VC method even though CycleGAN-VC was trained under
disadvantageous conditions (non-parallel and half the amount
of data). However, there is still a margin between original and
converted speeches. To fill the margin, we plan to apply our
method to other features, such as STFT spectrograms [30],
and other speech-synthesis frameworks, such as vocoder-free
VC [58]. Furthermore, our proposed method is a general
framework, and possible future work includes applying the
method to other VC applications [2]–[8].
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