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Abstract—The goal of speech enhancement is to reduce the
noise signal while keeping the speech signal undistorted. Recently
we developed the multichannel Kalman filtering (MKF) for
speech enhancement, in which the temporal evolution of the
speech signal and the spatial correlation between multichannel
observations are jointly exploited to estimate the clean signal. In
this paper, we extend the previous work to derive a parametric
MKF (PMKF), which incorporates a controlling factor to achieve
the trade-off between the speech distortion and noise reduction.
The controlling factor weights between the speech distortion and
noise reduction related terms in the cost function of PMKF, and
based on the minimum mean squared error (MMSE) criterion,
the optimal PMKF gain is derived. We analyse the performance
of the proposed PMKF and show the differences with the speech
distortion weighted multichannel Wiener filter (SDW-MWF). We
conduct experiments in different noisy conditions to evaluate
the impact of the controlling factor on the noise reduction
performance, and the results demonstrate the effectiveness of
the proposed method.

Index Terms—Speech enhancement, Microphone arrays,
Kalman filtering, Modulation domain

I. INTRODUCTION

The importance of speech enhancement is widely recognized

in recent years. Environmental noise has long been a bottleneck

of high performance speech processing systems in robots,

hearing aids, mobile devices and smart homes. Multichannel

methods are able to capture additional spatial information of

the acoustic environment for speech enhancement, and have

become a preferred solution compared to the single-channel

methods.

The target signal is captured by multiple microphones of

a microphone array, and typically includes different spatial

information with the noise signal. Examples exist in many

geometries including linear and spherical arrays [1]. Multichan-

nel speech enhancement methods generally exploit the spatial

diversity between target and noise, and can be categorized as

the beamforming based methods [2–5], post-filtering techniques

[6–9], and multichannel Wiener filtering (MWF) [10–13]. For

these conventional methods, the spatial correlation of the clean

signals in different microphones is used to design the optimal

filters, however, the temporal correlation of the speech signal

is usually neglected.

In our recent work [14], multichannel Kalman filtering

(MKF) has been proposed for speech enhancement, which

jointly exploits the spatial correlation and temporal evolution

of speech. By modelling the speech signal as an auto-regressive

(AR) process in the modulation domain, a short-time Fourier

transform (STFT)-domain linear prediction (LP) estimation is

obtained by first performing LP in the modulation domain, and

then inserting the phase from the minimum variance distortion

response (MVDR) beamformer output. Based on the minimum

mean squared error (MMSE) criterion, an optimal MKF gain

is derived to combine the STFT-domain LP estimation and

multichannel noisy observations for estimating the clean target

signal. It is also shown that the MKF becomes the MWF if

the LP information is not incorporated.

Speech enhancement aims to reduce the noise while keeping

the speech undistorted. However, it is known that aggressive

noise reduction always give rise to speech distortion and, in

order to reduce the speech distortion in the output signal,

the amount of noise reduction is limited. On one hand, the

requirement for noise reduction and speech distortion varies

in different applications. On the other hand, it would be

beneficial for STFT-domain methods to flexibly control the

noise reduction and speech distortion, which, for example,

could perform more aggressive noise reduction in speech-

absent time-frequency (TF) bins, and limit the speech distortion

in speech-present TF bins. In [10–12], the speech distortion

weighted MWF (SDW-MWF) has been proposed to achieve a

trade-off between speech distortion and noise reduction.

Since it has been shown in [14] that the MKF can be seen as

incorporating the LP information into the MWF, it is natural to

develop a parametric MKF (PMKF) which has the capability

to trade off between the speech distortion and noise reduction.

In this paper, the PMKF is proposed which uses a controlling

factor to weight between the speech distortion and noise

reduction related terms in the cost function of PMKF. Based

on the MMSE criterion, the optimal PMKF gain is derived. We

conduct experiments in different noisy conditions to evaluate

the impact of the controlling factor on the noise reduction

performance, and the results demonstrate the effectiveness of

the proposed method.

II. SIGNAL MODEL

We consider a noisy and reverberant environment which

includes a single source and an M -element microphone array.

The STFT-domain multichannel signal vector in frame n and

frequency bin k, y(n, k) = [Y1(n, k) Y2(n, k) . . . YM (n, k)]T ,

can be expressed as:

y(n, k) = x(n, k) + v(n, k)

= d(k)X1(n, k) + v(n, k), (1)
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where x(n, k) and v(n, k) are defined in a same form

as y(n, k) and denote the clean speech signal vector and

additive noise vector, respectively. We assume that the speech

and noise signals are uncorrelated. The vector d(k) =
[D1(k) D2(k) . . . DM (k)]T is the relative transfer function

(RTF) between all channels and the reference channel for the

target source, and is assumed to be known. Here we take the

first channel as reference, therefore, D1(k) = 1.

III. MKF FOR SPEECH ENHANCEMENT

A. MKF State-Space Model

The MKF proposed in [14] consists of a LP model to

describe the temporal evolution of the clean speech signal,

and a measurement model to describe the relationship between

the clean speech signal and the multichannel noisy observations.

The LP model of MKF is defined on the reference channel:

|x1(n, k)| = A(k)|x1(n− 1, k)|+ uW (n, k), (2)

where x1(n, k) = [X1(n, k) X1(n − 1, k) . . . X1(n − P +
1, k)]T is the signal vector of the first channel, and is also

the state vector of MKF. X1(n, k) is the STFT-domain signal

of the first channel. The LP order is P . A(k) is the speech

transition matrix defined in [14], u = [1 0 . . . 0]T is a P × 1
vector, and W (n, k) is the LP residual with variance δ2W .

In practice, A(k) is unknown and can be estimated via LP

analysis in the modulation domain, by using a few acoustic

frames of the speech signal of the first channel after noise

reduction. Noise reduction is performed using MWF, which is

realized by a minimum variance distortion response (MVDR)

beamformer with a single-channel Wiener post-filter [16]. We

define a P × P diagonal matrix Φ(n, k) whose diagonal

elements are the complex exponential phase of z1(n, k), where

z1(n, k) = [Z1(n, k) Z1(n− 1, k) . . . Z1(n−P +1, k)]H is

a P × 1 vector of the MWF output.

By incorporating the spatial information, we define the mea-

surement equation using STFT-domain multichannel signals:

y(n, k) = d(k)X1(n, k) + v(n, k)

= d(k)uTx1(n, k) + v(n, k)

= Q(k)x1(n, k) + v(n, k), (3)

where Q(k) = d(k)uT is an M × P matrix.

The frequency index, k, will be omitted in the rest of

the paper for simplicity. We note that the RTF, d, and the

measurement matrix, Q, are frequency-dependent, and u is a

constant vector.

B. MKF Solution

1) Modulation-domain Linear Prediction: Based on the LP

model (2), the amplitude of the state vector in the current

frame is estimated in the modulation domain as

|x1(n|n− 1)| = A|x1(n− 1|n− 1)|, (4)

where x1(n|n− 1) and x1(n− 1|n− 1) are the a priori and

the a posteriori estimates of the current frame and last frame,

respectively.

We can further obtain the STFT-domain LP estimation

x1(n|n− 1) by inserting the phase of z1(n), then

x1(n|n− 1) = Φ(n)|x1(n|n− 1)|. (5)

2) Incorporating Noisy Observation: The state vector is

finally updated by combining the estimates from STFT-domain

LP and the multichannel noisy observations:

x1(n|n) =x1(n|n− 1) +G(n)[y(n)−Qx1(n|n− 1)], (6)

where G is the MKF gain with dimension P ×M .

The error between the x1(n|n) and x1(n), denoted as e(n),
is computed as

e(n|n)

= x1(n|n)− x1(n)

= x1(n|n− 1)− x1(n) +G(n)[y(n)−Qx1(n|n− 1)]

= e(n|n− 1) +G(n)[Qe(n|n− 1) + v(n)]

= [I−G(n)Q]e(n|n− 1) +G(n)v(n), (7)

where e(n|n−1) is a STFT-domain LP estimation error vector

defined as

e(n|n− 1) = x1(n|n− 1)− x1(n). (8)

We define an MMSE-based cost function for the MKF as

JMKF[G(n)] = tr[Ree(n|n)], (9)

where Ree(n|n) = E{e(n|n)eH(n|n)}. Minimizing

JMKF[G(n)] leads to the MMSE optimal solution of the MKF

gain, ĜMKF(n):

ĜMKF(n)

= argmin
G(n)

JMKF[G(n)]

= Ree(n|n− 1)QH [QRee(n|n− 1)QH +Rvv(n)]
−1,

(10)

where Ree(n|n − 1) = E{e(n|n − 1)eH(n|n − 1)} is the

covariance matrix of the STFT-domain LP estimation error,

and Rvv(n) = E{v(n)vH(n)} is the multichannel noise

covariance matrix. The estimation of Ree(n|n−1) is presented

in [14] and Rvv(n) can be estimated by [17–19].

Finally, the clean signal of the first channel X̂1(n) is

estimated as uTx1(n|n).

IV. PROPOSED METHOD

In this section we generalize the MKF to PMKF, which uses

a controlling factor to trade off between the speech distortion

and noise reduction.

A. Cost function of PMKF

The proposed PMKF adopts the same state-space model as

the MKF in Section III-A, and follows (4) and (5) to obtain the

STFT-domain LP estimation of the clean signal x1(n|n− 1).
Since x1(n) is the true clean signal, the STFT-domain

LP estimation error vector e(n|n − 1) defined in (8), can

actually be seen as the speech distortion vector after STFT-

domain LP. In (7), with the MKF gain, the speech distortion
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vector e(n|n− 1) is converted into one component of e(n|n),
[I − G(n)Q]e(n|n − 1), which can be regarded as the

speech distortion after MKF. Because the multichannel noisy

observations are incorporated to give the final estimation of

the clean signal, e(n|n) also consists of one noise-related

component G(n)v(n), which is the residual noise vector in

the MKF output.

The e(n|n− 1) is calculated solely from the speech signal,

therefore, based on the assumption that the speech and noise

are uncorrelated, the MMSE based cost function for MKF in

(9), JMKF[G(n)], can be rewritten as

JMKF[G(n)] = tr{[I−G(n)Q]Ree(n|n− 1)[I−G(n)Q]H}
︸ ︷︷ ︸

Js[G(n)]

+ tr{G(n)Rvv(n)G
H(n)}

︸ ︷︷ ︸

Jv [G(n)]

. (11)

Thus the JMKF[G(n)] is decomposed into Js[G(n)] and

Jv[G(n)], which are related to the speech distortion and the

noise residual in the MKF output, respectively.

In order to trade off between the speech distortion and noise

reduction, a new MMSE based cost function for the PMKF

is now proposed, as a weighted combination of Js[G(n)] and

Jv[G(n)],

JPMKF[G(n)] = Js[G(n)] + λJv[G(n)], (12)

where λ ≥ 0 is the controlling parameter of PMKF. Note that

when λ = 1, the cost function of PMKF is identical to the

previously proposed MKF. If λ > 1, more emphasis will be

given to noise reduction, and if λ < 1, more emphasis will be

given to controlling the speech distortion.

B. Optimal PMKF Gain

The optimal PMKF gain ĜPMKF(n) is obtained by minimiz-

ing JPMKF[G(n)], based on [20], by setting the derivative of

JPMKF[G(n)] over G(n) to zero. We have,

ĜPMKF(n)

= argmin
G(n)

JPMKF[G(n)]

= Ree(n|n− 1)QH [QRee(n|n− 1)QH + λRvv(n)]
−1

= Ree(n|n− 1)QH [RQe(n) + λRvv(n)]
−1, (13)

where RQe(n) = QRee(n|n− 1)QH . From the definition of

Q in (3), RQe(n) = δ2e(n|n − 1)ddH is of rank-one, where

δ2e(n|n− 1) = uTRee(n|n− 1)u is the first diagonal element

of Ree(n|n−1). Therefore a singular matrix inversion problem

will occur when λ = 0 or the noise is absent. The similar issue

applies also to (10).

To avoid this problem, in the PMKF, the inverse of matrix

B = UΛVH , is computed based on singular value decompo-

sition (SVD) as VΛ̄UH , and Λ̄ is a diagonal matrix whose

i-th diagonal element is 1/Λi,i if |Λi,i| > maxi{|Λi,i|} × ζ,

and is 0 otherwise. The Λi,i is the i-th diagonal element of Λ,

and in practice, ζ can be chosen according to the uncertainty

of the RTF d.

The ĜPMKF(n) is substituted into (6), and the clean signal

of the first channel is estimated as X̂1(n) = uTx1(n|n). The

matrix Ree(n|n− 1) is also updated based on ĜPMKF(n) as

in [14].

C. Analysis

The expression for ĜPMKF(n) in (13) is similar to that of

the SDW-MWF [11, 21], which is written as

hSDW-MWF = uTRxx(n)[Rxx(n) + λRvv(n)]
−1, (14)

where Rxx(n) = E{x(n)xH(n)} is the speech covariance

matrix. However, since the Ree(n|n − 1) in ĜPMKF(n) is a

function of e(n|n− 1), which depends on the STFT-domain

LP estimation x1(n|n − 1), the speech evolution over time

is exploited by the PMKF algorithm but not by SDW-MWF

algorithm.

To further elaborate the properties of PMKF, let us consider

two extreme cases. Since uTd = 1, X̂1(n) can be expressed

as

X̂1(n) = uTduTx1(n|n)

= uTQ{ĜPMKFy(n) + [I− ĜPMKFQ]x1(n|n)}

= uT {RQe(n)[RQe(n) + λRvv(n)]
−1y(n)+

[Q−RQe(n)(RQe(n) + λRvv(n))
−1×

Q]x1(n|n)}, (15)

where “(n)” is omitted for ĜPMKF(n) for simplicity.

In the extreme case, when λ = 0, (15) becomes

X̂1(n) = uT {δ2e(n|n− 1)ddH ddH

‖d‖22δ
2
e(n|n− 1)

y(n)+

[Q− δ2e(n|n− 1)ddH ddH

‖d‖22δ
2
e(n|n− 1)

Q]x1(n|n)}

= uT {
1

‖d‖2
ddHy(n) + [Q−

1

‖d‖2
ddHQ]x1(n|n)}

=
1

‖d‖2
dHy(n) + [uT − uT ]x1(n|n)

=
1

‖d‖2
dHy(n), (16)

where ‖d‖2 = dHd. In such case, the PMKF has the form

similar to the conventional delay and sum (DS) beamformer

[22], therefore, even setting the controlling factor λ = 0, PMKF

achieves signal enhancement. In contrast, the noise will not be

suppressed by SDW-MWF, since from (14), hSDW-MWF = uT

if λ = 0 [11].

When λ = +∞, from (15) we have

X̂1(n) = uTQx1(n|n) = uTduT = uTx1(n|n), (17)

which means that the noisy observations are not incorporated

and the speech signal is finally estimated as the STFT-domain

LP estimation. This property of PMKF is again different with

SDW-MWF, which sets the output signal to zero when λ =
+∞, such that the noise component is totally eliminated.
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In summary, when adjusting the controlling parameter of

PMKF, the output signal changes between the DS-like beam-

former output and the STFT-domain LP estimation. However,

in practice, when setting λ = +∞, since the STFT-domain LP

estimation is computed from the clean signal estimations in

previous frames, even though the speech transition matrix A is

non-zero, the LP estimation will approach zero after a period

of speech absence and the estimated speech signal gradually

vanishes over time.

In addition, we point out that analogous to the Section 3.3

in [14], it can be proved that the PMKF becomes SDW-MWF

when the LP information is not adopted. The derivations are

omitted in this paper.

V. EXPERIMENTS

The performance of the proposed PMKF is compared with

the conventional MVDR beamformer and the SDW-MWF

using a public hearing aid (HA) head-related impluse response

(HRIR) database [23]. The MKF and MWF are included as

special cases of PMKF and SDW-MWF respectively, by setting

λ = 1 in (13) and (14).

A. Experimental Setup

Six-channel room impulse responses (RIRs) of the HRIR

database measured in the cafeteria environment are used to

generate the multichannel noisy and reverberant signals with

8 kHz sampling frequency. The six channels include three

behind-the-ear (BTE) channels for each ear. The listener is

seated at one corner of a rectangle table in the cafeteria, and

the target speaker is seated opposite the listener at a distance

of 1m in location 1 A (see Fig. 5 in [24]).

We first obtain a 10 s speech signal by concatenating

randomly selected sentences from the IEEE sentences database

[25], and then convolve the signal with the listener-specific

RIRs to yield the multichannel clean reverberant signal. The

multichannel ambient noise and babble noise recorded in the

same environment are added to generate the noisy observations.

Signal-to-noise ratios (SNRs) of −5 dB and 5 dB are tested.

The STFT frame duration for all algorithms is 16ms with

4ms frame hop. The RTF vector is computed using real RIRs

truncated to 16ms with the first channel as reference. We

use [17] to estimate the multichannel noise covariance matrix.

The LP order of PMKF is P = 2, and to estimate the LP

coefficients and excitation variance, the modulation-domain

frame is 32ms with 16ms frame hop. We choose ζ = 10−6.

For the SDW-MWF and PMKF, the λ changes from 0.1 to

1000, and the results are shown on a logarithmic scale.

B. Experimental Results

We evaluate the performance using the improvements of

short-time objective intelligibility (STOI) [26], perceptual

evaluation of speech quality (PESQ) [27], and frequency-

weighted segmental SNR (FwSegSNR) [28] metrics over the

noisy inputs of the reference channel. Ten trials are conducted

and the average results are shown in Fig. 1 and Fig. 2.
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Fig. 1: Comparison results for different values of the controlling

parameter λ in ambient noise conditions.
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Fig. 2: Comparison results for different values of the controlling

parameter λ in babble noise conditions.

It can be seen that when λ < 10, for all conditions the PMKF

yields the largest improvements in PESQ and FwSegSNR, and

achieve similar improvements in STOI compared with MVDR.

When increasing the λ, especially in high noise scenarios,

the FwSegSNR improvement of the PMKF becomes larger,

indicating more noise reduction, and the improvement in STOI

decreases, as the speech becomes more severely distorted. It

can be seen that very large values of λ is not a suitable choice

for PMKF, because less speech signal is preserved and therefore

making the LP estimation less reliable.

VI. CONCLUSION

In this paper, we have proposed a PMKF for speech

enhancement that uses a controlling factor to trade off between

the speech distortion and noise reduction. We derived the

optimal PMKF gain based on the MMSE criterion, analysed
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the performance of PMKF, and showed the difference between

PMKF and SDW-MWF. Simulation results in real-world noisy

conditions demonstrate the effectiveness of the proposed

method.
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