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Abstract—Finite Impulse Response (FIR) digital filters are
widely used due to their capabilities of low computational load,
stability and linear phase. Most traditional design approaches
can not control with enough accuracy the frequency response
of the designed filter. For this reason, we propose the use of
a memetic algorithm along with a weighted fitness function, to
estimate optimized filter coefficients that best approximate ideal
specifications. Results have been compared to both traditional
methods (mainly windowing and the Parks-McClellan algorithm)
as well as to several bio-inspired techniques. Numerical results
show that proposed method achieves better fit to filter specifi-
cations, a larger attenuation in the stop band and a narrower
transition band, at the expense of slightly increasing the pass-
band ripple (0.5 − 0.7 dB), the later in about 68% of the cases.

Index Terms—FIR design, memetic algorithm, genetic algo-
rithm, k-opt algorithm

I. INTRODUCTION

Filters are important components in most computing and
electronic devices. Filtering aims to extract information about
the signal of interest, either by eliminating noise, extracting
frequency components or by separating desired components
from unwanted signals.

FIR (Finite Impulse Response) filters present many ad-
vantages such as stability and the possibility of obtaining
generalized linear phase. Like any linear time-invariant system,
they are completely defined by knowing the output signal –
known as impulse response– when an impulse signal is placed
as input. The length of this output is known as the filter
order. The larger this order is, the more similar becomes the
filter response to the ideal filter. This increases computational
load and processing time. Optimal filter design according to
a specified criterion can be seen as an optimization problem
[1].

Many conventional methods allow the design of FIR filters.
For instance, the method of windowing [2], the Parks and
McClellan (PM) algorithm [3], etc. However, these methods
do not provide accurate control of various parameters such as
the bands cut-off frequencies and the width of the transition
band. Besides, methods based on classical optimization have
a great tendency to get trapped in local minima, due, in part,
to a wrong selection of initial conditions. Their slow rate of
convergence also limits its practical use, particulary in on-
line applications. Many novel design strategies, including bio-

inspired methods, aim to overcome these drawbacks. These
methods have several interesting properties, such as simplicity
and the ability to handle different data coding and repre-
sentations [4]. However, conventional evolutionary algorithms
(EAs) are only capable of identifying the high performance
region at an affordable time and present inherent difficulties
in performing local search. To overcome these problems, once
the high performance regions of the search space are identified
by the EAs, it is useful to apply a local search procedure
to optimize the members of the final population [4]. The
efficiency of the algorithm and the quality of the solutions
are well improved in this way. These hybrid schemes with
closer analogy to cultural evolution are often categorized as
memetic algorithms (MAs) [5].

In this paper, a memetic algorithm that combines a standard
genetic algorithm (GA) with a k-opt heuristic local search
scheme to improve convergence speed and solution accuracy,
is applied to design FIR filters. The proposed algorithm
employs a two-phase strategy where it starts with a GA that
searches for the optimal region with limited computing time.
Afterwards, a k-opt heuristic local search is employed to do
the fine-tuning so as to obtain the exact global optimum –
whenever previous GA has converged properly–, with light
computational expense [6], [7].

The thus obtained MA improves the characteristics of the
designed filter, showing a good trade-off between frequency
response characteristics (mainly, ripple, attenuation and tran-
sition bandwidth) and processing time. Besides, it allows a
better control of frequency features than most conventional
techniques which aim to reduce implementation complexity
[8].

II. LITERATURE REVIEW

Nature-inspired methods so far used for FIR filter design
belong to a vast variety of strategies. This section summarizes
the state-of-the-art in FIR filter design using nature-inspired
methods, focusing into two big categories: evolutionary algo-
rithms and swarm methods.

Initial approaches made use of genetic algorithms [9] and
some hybrid variants [10]. Simulations showed that GAs
achieved better solutions, in terms of passband ripple and
group delay, although stopband attenuation was slightly poorer.
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Some hybrid methods were developed in order to reduce
computational cost [11].

Differential Evolution (DE) algorithms have also been pro-
posed [12]. Simulations show that performance was close to
the GA, though computational load of DE was less than that
of GA and much lower than the least squares method. In [13],
Simulated Annealing (SA) was proposed for the design of
both FIR and IIR filters. Results were quite good although
computational load was very high. Tabu Search (TS) has also
been proposed for FIR design [14].

Swarm methods such as the Ant-Colony (ACO) algorithm
emerged as a need to find the global optimum in medium order
filters [15]. A bee-colony algorithm was recently proposed by
Dwivedi [16] and the algorithm of cloud of particles (Particle
Swarm Optimization, PSO) was first proposed for low-pass
filter design in [17]. Recently, the algorithm of Herd of Cats
(CSO) was used in [18], and [19] developed a novel Bacteria
Food Search algorithm (BFO), both of them for FIR design.

Even a few attempts using memetic algorithms for digital
filter design have been proposed [20], [21].

III. THEORETICAL FOUNDATION

A. Digital FIR filter design

As linear systems, a FIR filter is completely defined by
giving either its transfer function H(z), or its corresponding
difference equation. The later can be written as:

y[n] = h[0]x[n] + h[1]x[n − 1] + · · · + h[N − 1]x[n − (N − 1)]

where x[n] and y[n] stand for the input and output signal,
respectively, and N is the number of filter coefficients (thus,
N − 1 is known as the order of the filter). The purpose of
digital filter design is to obtain the coefficients of the filter
impulse response h[n]. The values of h[n] will determine the
type of frequency selective filter being designed: low-pass filter
(LPF), high-pass filter (HPF), band-pass filter (BPF) or band-
stop filter (BSF).

Filter specifications are often given in the frequency domain
as, for example, the pass-band ripple (δp) and maximum
attenuation (Ap), the bands cut-off frequencies, the minimum
attenuation of the stop band (As), the stop-band ripple (δs),
and the transition bandwidth (∆F ), among others.

This work studies the design of linear-phase symmetrical
FIR filters. It is well-known that linear phase is guaranteed
if the corresponding impulse response satisfies one of the
following symmetry conditions [2]: h[n] = h∗[−n] or h[n] =
−h∗[−n].

Due to this symmetry, only half of the coefficients need to
be estimated. At the end of the design process, coefficients
are duplicated to form the other half of the impulse response.
Thus, complexity of the problem is reduced to half and the
desired property of linear phase is satisfied.

The design process of an optimal filter might be seen as
an optimization problem where some error measure must be
minimized [1]. For instance, some error function between the
ideal frequency response and the real frequency response of
the estimated filter coefficients.

IV. DESIGN METHODOLOGY

A. GA encoding and fitness function
This paper proposes the use of a MA, originally developed

in [4] and here extended for FIR design. The first stage of
the MA is a GA where each chromosome encodes a different
filter impulse response. This is represented by vector xi:

xt
i =

[
hi,t(1), hi,t(2), hi,t(3), . . . , hi,t

(
N + 1

2

)]
which represents the (N + 1)/2 coefficients of the filter,
taking advantage of the imposed symmetry; index i indicates
a particular chromosome from the total population of PS
(1 ≤ i ≤ PS), and t stands for current generation. The
population will consist of a total of PS possible solutions.

This work proposes to use a fitness function (FF) defined
as a combination of two previously proposed FFs. A first one,
that we will refer as J1, obtained in [18], [19], and a second
one, J2, taken from [17]. This way, the FF proposed for use
in the MA is,

J = w1J1 + w2J2

= w1

(
max

(
|E(ω|ω≤ωp) − δp|

)
+ max

(
|E(ω|ω≥ωp)

−δs|)) + w2

 ∑
ω≤ωp

abs [abs(|Hd(ω)| − 1) − δp]

+
∑

ω≥ωs

abs(|Hd(ω)| − δs)

 (1)

where coefficients w1 and w2 are adjusted in order to get
a filter with better frequency characteristics. Error function
E(ω) is defined in [3] as

E(ω) = G(ω) [Hd(ω) − Hi(ω)] (2)

G(ω) =
{

δs/δp 0 ≤ ω ≤ ωp

δp/δs ωs ≤ ω ≤ π
(3)

where G(ω) is a weighting function and ωp and ωs rep-
resent the pass- and stop-band limits, respectively. Notice
that frequencies are normalized to sampling frequency. Hd(ω)
represents the frequency response of the designed filter, and
Hi(ω) represents the frequency response of the ideal desired
filter. This way, error function E(ω) is higher in that band
where tolerances are narrower. Notice that w1J1 weights the
maximum errors obtained in pass- and stop-bands, measured
with respect to maximum allowed ripples, δp and δs, respec-
tively. This expression allows to differently weight errors in
pass- and stop-bands, since E(ω) depends on G(ω), which
is given by Eq. (3), where k allows to weight asymmetrically
each filter band. On the other hand, term w2J2 gathers together
errors at every frequency within both pass- and stop-bands
(and not only the maximum error values) and references them
with respect to maximum deviations, δp and δs, respectively1.
Finally, notice that error within transition bandwidth is taken
into account in second term of J1.

1This expression assumes an ideal amplitude value equal to 1 within
passband, and equal to 0 within stopband.
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B. Steps of the MA

Proposed MA combines a standard GA and a heuristic
local search method. First, the GA estimates a potential quasi-
optimum solution, then, the k-opt local search algorithm is
applied to the GA fittest individual so as to quickly estimate
a precise solution (always assuming that the GA has reported
a solution estimate near the global optimum.

1) Genetic algorithm (Step 1): The metric given in Eq. (1)
is used as the fitness function in the GA. In contrast to [4],
the here proposed GA makes use of two genetic operators:
mutation and crossover, though the later is applied with
low probability. Mutation is implemented using the scheme
proposed in [4], i.e., offspring vector oi is calculated as

oik = sign(pik + Nk(0, σ)), k = 1, 2, ,K (4)

where oik and pik denote the k-th element of the i-th offspring
and parent chromosomes, respectively, Nk(µ, σ) represents a
Gaussian random variable with mean µ and standard deviation
σ. A new random number is generated for each value of
k. Standard deviation controls the proximity of the offspring
around the parents.

Next, crossover is performed with probability Pc = 0.01.
The fittest PS individuals from the parents and offspring
are selected to obtain next generation. GA stops when the
algorithm starts converging. The heuristic local search of Step-
2 is then called to fine-tune the best individual found so far.

2) k-opt Local Search (Step-2): Local search methods are
improvement heuristics that search in the neighborhood of the
current solution for a better one until no better solution is
found. Neighborhood of a binary encoded vector is defined as
the set of solutions which can be reached by changing the bits
value within the vector.

The smallest neighborhood can be achieved by flipping a
single bit of the solution vector. The so-called 1-opt neighbor-
hood, searches for a flip with the highest associated gain in
fitness (g = f(b′) − f(b)) in each iteration. An expression
for the gain of flipping bit k in current solution is given in
[4]. The k-opt neighborhood is obtained by flipping one up to
k elements in the solution vector simultaneously:

Nk−opt(b) = b′ ∈ S/dH(b,b′) ≤ k (5)

where S is the solution space and dH denotes the hamming
distance between bit vectors. The k-opt neighborhood size,
|Nk−opt(b)| =

∑k
i=0

(
k
i

)
, grows exponentially with k.

To efficiently search a subset of the k-opt neighborhood, the
main ideas of the Lin-Kernighan methods can be used [6], [7].
The main aim is to find a better solution by flipping a variable
number of bits in the current solution in every iteration. A
sequence of k solutions is produced in each iteration by
flipping the bit with the highest associated gain. Every bit
of the solution is only flipped once. The best solution from
PS solutions is then selected as input for next iteration. Thus,
a variable number of bits are flipped in each iteration to find
a better solution in the neighborhood of current solution.

V. RESULTS

This section shows the results of the simulations carried out
with Matlab(R) and the effectiveness of the proposed filter
design method. An odd number of samples is used for all
filters designed in this work and the condition of symmetry
of coefficients is assumed. Therefore, any type of filter (LPF,
HPF, BPF and BSF) can be designed without restrictions. N =
20 unless otherwise specified. Results are mean values after
50 independent runs of the algorithm.

After several initial simulations, values selected for the
different parameters were: PS = 30, maximum number of gen-
erations in GA NaxGen = 250, crossover probability Pc = 0.2,
mutation probability Pm = 0.01, w1 = 0.25 and w2 = 0.75.
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Fig. 1. Frequency response of the three compared 20-order low-pass filters:
MA, PM [3] and windowing (Kaiser with β = 2.48) [2].

A. Low pass filter design

1) Fixed filter order N : The parameters of the desired LPF
to be designed are: Fs = 2 Hz, L = 512, (N − 1) = 20,
δp = 0.1, δs = 0.01, normalized pass-band cut-off frequency
ωp = 0.45, stop-band normalized cut-off frequency ωs = 0.55,
and ∆F = 0.1.

This LPF design will be performed using the following
methods: windowing [2], PM [3], and MA. In Fig. 1 frequency
responses are depicted. Notice that MA gets the filter with the
narrowest ∆F , clearly outperforming the other two methods.
In contrast, MA slightly increases δp.

The filter designed with MA presents higher As than those
obtained with PM and windowing. Notice the linear phase of
the three methods in the pass-band.

Table I shows the results in terms of maximum ripples
δp and δs, minimum As, and ∆F . It can be observed that,
for the case of windowing, if a reduced ∆F is required,
attenuation As must be reduced (lower β). This fact involves
that δp increases, as well as the maximum attenuation in this
band. Also, MA implemented with proposed FF provides a
better frequency response than PM, in terms of ∆F and As.
However, it slightly increases δp and, therefore, the maximum
attenuation produced in this band.
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TABLE I
TRANSITION BANDWIDTH, MAXIMUM PASSBAND AND STOPBAND

RIPPLES, AND STOPBAND ATTENUATION FOR A 20-ORDER LPF DESIGNED
WITH MA, PM [3] AND WINDOWING [2]. VALUES OBTAINED AFTER 50

INDEPENDENT RUNS.

Method Max. δp Max. δs Min. As Transition
used (0 − 0.45π) (0.55π − π) (dB) band (∆F )

Max. Min. ± s.d. Max. Mean ± s.d. Max. Mean ± s.d. Max. Mean ± s.d.
PM 0.025 0.025 ± 0 0.025 0.025 ± 0 32.03 32.03 ± 0 0.102 0.102 ± 0

Windowing 0.031 0.031 ± 0 0.018 0.018 ± 0 34.68 34.68 ± 0 0.121 0.121 ± 0
(Kaiser,β = 2.48)

Windowing 0.052 0.052 ± 0 0.034 0.034 ± 0 29.38 29.38 ± 0 0.098 0.098 ± 0
(Kaiser,β = 1.7)

MA 0.163 0.145 ± 0.01 0.018 0.016 ± 0.1 36.82 36.98 ± 0.16 0.089 0.095 ± 0.003

2) Variable order: Let us see what happens if both filter
order and transition bandwidth are modified.

Filter order
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Fig. 2. Population size (PS) and number of iterations (MaxGen) required for
MA convergence for different orders of a low pass filter.

Fig. 2 shows the relationship between order N and both the
population size and the number of iterations required for the
design. This figure is valid as a guide for parameter tuning for
HPFs and BPFs, as well. BSFs require an increase of ∼ 33%
in both parameters.

3) Comparison with other nature-inspired algorithms:
Once the comparison with traditional methods has been made,
comparisons to other nature-inspired algorithms will be per-
formed.

Fig. 3 shows the frequency responses of MA as well as
BFO, PSO and RGA [19]. MA shows the best As without an
increase of ∆F . In the meanwhile, δp is very similar to those
obtained with other design methods. If we look at the phase
of the designed filters, all of them present a linear phase in
the pass-band, in accordance to the properties of symmetrical
FIR filters described in Section III.

For the shake of brevity, results concerning the high-pass fil-
ter have not been included here. However, similar conclusions
to those of the low-pass filter are valid.
B. Band-pass filter (BPF) and band-stop filter (BSF)

This section gathers the results related to both BPF and BSF
filters. Common specifications are: Fs = 2 Hz, L = 512, (N−
1) = 20, δp = 0.1, δs = 0.01. Cut-off frequencies for BPF:
inferior stop-band cut-off frequency ωs1 = 0.25, inferior pass-
band cut-off frequency ωp1 = 0.35, upper pass-band frequency

ωp2 = 0.65, upper stop-band cutoff frequency ωs2 = 0.75.
For BSF: ωp1 = 0.25, ωs1 = 0.35, ωs2 = 0.75, ωp2 = 0.85.
BSF is implemented with PS=50 and MaxGen=300, while BSF
requires PS=60 and MaxGen=500.
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Fig. 3. Frequency response, magnitude (dB) and phase (rad), for a 20-
order low pass filters designed with different nature-inspired algorithms: MA
(proposed), BFO, PSO and RGA [19].

Like in previous sections, MA is first compared to tradi-
tional approaches. Fig. 4 shows frequency responses of the
three methods for stopband filters. It can be seen that the
method with highest As is the proposed MA, with a ∆F very
similar to the rest of the methods, being, on the contrary, worse
in terms of δp, which is slightly higher than the ones retrieved
using windowing and PM.

Numerical simulations show that MA with J gets a larger
As as well as a narrower ∆F . This does not occur with
traditional techniques where, despite having a lower attenua-
tion, ∆F is much higher. However, δp is much lower. Similar
conclusions are valid for BSFs.
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Table II compares frequency parameters with those obtained
with other nature-inspired algorithms (BFO and CSO [19]).
MA clearly outperforms the other approaches since it achieves
the largest As, the smallest δp and δs, while keeping transition
bandwidth within specs tolerance.

TABLE II
FREQUENCY FEATURES OF BAND-STOP FILTERS OBTAINED WITH

DIFFERENT NATURE-INSPIRED DESIGN METHODS IN COMPARISON TO
THOSE OBTAINED WITH PROPOSED MA. DESIGN OF A 20-ORDER BSF.

Design Method Max. As (dB) Max. δp Max. δs ∆F

BFO [19] 33.84 0.161 0.02033 0.1080
CSO [18] 34.47 0.163 0.01891 0.1006

MA 37.91 0.1499 0.01381 0.094

This way, proposed MA with FF J given in Eq. (1),
consolidates as a good alternative design method to other
strategies for any type of frequency-selective digital filter.

VI. CONCLUSIONS

This paper explores the possibility of using a memetic
algorithm for designing FIR filters. The proposed memetic
algorithm consists in two stages. First, a GA is applied
for determining the region of the solutions space where the
optimal solution is, and, afterwards, a local search technique
based on the k-opt algorithm is applied.

MA has been compared to both traditional methods for filter
design (windowing [2], the minimum squares method and the
algorithm of Parks-McClellan [3]), and several nature-inspired
methods, mainly CSO [19], [18], RGA [19], BFO [19] and
PSO [22].

Numerical results show that MA improves the frequency
characteristics of filters obtained by conventional techniques.
The frequency response complies with enough accuracy spec-
ifications of transition bandwidth and cut-off frequencies of
stop and pass bands, giving priority to the attenuation of
the bands over the width of transition bands. MA obtained
a greater attenuation of the stopband (4-6 dB higher) in
comparison to traditional methods, reducing transition band
width, as well. However, a slight increase in the passband
ripple is observed in about 68% of cases, and, therefore, an
increment in the attenuation of that band around 0.5-0.7 dB.

On the other hand, when MA is compared to other nature-
inspired techniques it achieves satisfactory results, as well.
Simulations carried out indicate that the proposed method
obtains a better performance than other techniques in terms of
frequency parameters: a greater attenuation of the stop-bands,
a suitable transition bandwidth and a pass-band ripple very
close to those obtained with other similar techniques.
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