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Abstract—We investigate the question of obtaining a reduced
time-frequency description of a chirp type signal that can be
used as reference pattern in time-frequency searches. This is
particularly relevant for searches of transient gravitational waves
from astrophysical sources such as the mergers of neutron stars
and/or black holes, the main area of this study. Sparse approx-
imation algorithms that allow constraints on the approximation
error do not perform well when the decomposition bases are
redundant. This study puts in evidence some of the shortcomings
of sparse approximation algorithms when dealing with unions
of highly correlated bases, a case that currently lacks of a
comprehensive mathematical analysis, and proposes solutions
to mitigate them. We propose a variation of the matching
pursuit algorithm that improves its robustness in the context
of gravitational waves patterns construction. We also compare
this algorithm to standard sparse approximation methods.

I. Introduction

Gravitational waves are ripples in the metric of spacetime
that propagate at the speed of light [1]. Their existence is
a long-standing prediction of Einstein’s theory of general
relativity. Recently, the LIGO and Virgo detectors detected
gravitational waves from distant astrophysical sources includ-
ing binary black holes (BBH) [2] and binary neutron star [3].
For the first time dark sources that emit little or no photons
at all are observed directly through a different radiation than
electromagnetic waves. These major discoveries herald a new
era for astronomy.
Finding rare and weak gravitational wave signals in non-

stationary and non-Gaussian instrument noise is a particularly
challenging problem. A range of data analysis approaches
has been applied (see e.g., [4] for a review) to detect the
gravitational-wave signature from transient sources such as
binary mergers of neutron stars and/or black holes.
Transient searches, our focus here, identify bright, time-

coincident and phase-coherent pixels in time-frequency repre-
sentations of the data from multiple detectors. The data anal-
ysis pipeline Coherent WaveBurst [5] has been successfully
applied in this context.

When searching for a particular astrophysical source, the
gravitational waveform model can be used to enhance the
search sensitivity. An approach is to search specifically for the
time-frequency pattern(s) associated with the waveform model
[6], [7]. Such an approach thus aims at selecting components
that are likely to describe the gravitational wave signal and
prevent the search algorithm from selecting those due to
transient noise. The expected improvement is larger when
the signal model can be completely characterized by a small
number of time-frequency components.

We consider a range of sparse approximation algorithms to
obtain the “template” time-frequency pattern associated with
the expected gravitational-wave signals from binary mergers.
Figure 1 provide few examples of such chirp signals. Here, we
are interested in the sparse approximation of the (noise-free)
signal model. The use of sparsity to estimate the gravitational
wave signal from the noisy observations is explored elsewhere
(see, e.g., [8]).

In order to determine a compact representation of model
signals, a classical method is provided by the Matching Pursuit
(MP) algorithm [9]. Here the approximation of a signal is
constructed by iteratively determining the largest coefficient
in the decomposition. However, in the present context of
highly correlated atoms in the decomposition dictionary this
method is known to be inefficient at some point. In this
paper we determine a greedy approach, based on the MP
algorithm and adapt it to the time-frequency decomposition of
chirp-like signals associated with black hole binary mergers.
We also compare our method to different classical sparse
approximation algorithms.

This paper is structured as follows. In Section II we present
the state of the art decomposition method. Section III is
devoted to the description of classical sparse approximation
methods. In Section IV, we construct a new method. Finally
Section V presents some results whereas Section VI concludes
the paper.
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(a) 19 - 19M⊙ BBH waveform (zero spins)
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(b) 20 - 20M⊙ BBH waveform (spins s1z = 0.4 and s2z = 0.7)
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(c) 15 - 15M⊙ BBH waveform (zero spins, eccentricity e = 0.3)

Fig. 1: Theoretical models of gravitational-wave signals
emitted during the merger of two black holes. The waveform
is a chirp signal with a time increasing (power-law) instan-
taneous frequency. Several examples are shown where the
astrophysical parameters are varied, such as the component
masses and spins s1z and s2z or the eccentricity e of the
binary orbital motion. Those signals are processed through
a whitening filter obtained from the detector noise power-
spectral distribution. This filtering discards the part of the
original signal where the instrumental noise is large (low and
high frequencies, below ∼ 30 Hz and above few kHz) and
retains the frequency band where the noise is low.

II. Sparse time-frequency approximation of chirp signals

Coherent Waveburst maps time series data to the time-
frequency plane by projecting onto Wilson bases, through
the Wilson-Daubechie-Meyer (WDM) transform [10], [11].
Wilson bases are variation of the well-known Gabor decom-
position, with the additional advantage of being orthonormal
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Fig. 2: Redundancy measurement between two Wilson bases
with windows of different durations/bandwidth. The redun-
dancy is characterized by the largest correlation (scalar prod-
uct) between all pairs of elements from the two bases. This
measurement is performed for different window bandwidths,
ranging from 2 Hz (which corresponds to 256) to 64 Hz (i.e.,
8).

bases with a good time-frequency localization. They are com-
posed of functions distributed on a regular time-frequency
lattice and obtained by the linear phase cosine modulation
of a window. Coherent Waveburst uses the Meyer scaling
function (which has a compactly supported Fourier transform)
as the window [11] and considers a collection of Wilson bases
(typically seven to nine) based on different window durations
and bandwidths. These bandwidths are distributed in power of
two, ranging from 1 to 64 Hz.
The union of these orthonormal bases forms a redundant

dictionary, which constitutes a tight frame, see Fig. 2. We
denote y 7→ x = Wy, the vector composed by the coordinates
of the orthogonal projections of x on each vector of the
dictionary W.
Given the astrophysical model y (preconditioned by a

whitening that selects the signal content in the detector band-
width), the goal is to obtain a sparse approximation x that
satisfies

min
x
∥x∥0 s. t.

∥∥y−WTx
∥∥
2 ≤ δ (1)

where r ≜ y−WTx denotes the approximation error or residual
and ∥·∥p denotes the Lp norm. Our problem is fairly generic
and common to many applications: seek the simplest linear
approximation from a dictionary up to a given error.
The minimization problem in (1) is NP-hard, hence the need

for reasonable approximations.
To cover the astrophysical parameter space, the set of

models y typically include about 10,000 waveforms. A key
astronomical issue is to fasten the already existing algorithms
in order to lower the time needed to precisely identify the
characteristics of the gravitational wave recorded.

III. State-of-the-art sparse approximation algorithms

A. Standard Matching Pursuit
Matching Pursuit [9] is one of the simplest sparse approx-

imation algorithms. The approximation is constructed itera-
tively by selecting the pixel with the largest coefficient in the
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residual transform and adding it to the current approximation.
The iteration can be formalized as follows:

xn+1 = xn +H1(Wrn) (2)

where the residual is defined as rn ≡ y −WTxn and Hs(x) is
the hard-thresholding operator, that sets all components of x
but the s largest ones to zero.

B. Orthogonal Matching Pursuit
The Orthogonal Matching Pursuit (OMP) [12], [13] makes

use of a Gram-Schmidt procedure to orthogonalise the pixels
found by the MP.
If p1, . . . , pn are the pixels selected up to iteration n, the

pixel p̃n+1 is selected as the pixel whose energy in the residual
is highest, as in the MP algorithm:

p̃n+1 = H1(Wrn)

where rn = y −
∑n

i=1 pi is the residual at the previous step.
This pixel is then orthogonalised with regard to the previously
selected pixels:

pn+1 = p̃n+1 −
n∑

i=1

⟨p̃n+1 | pi⟩
∥pi∥2

pi.

Although the selected pixels are not modified in future iter-
ations, the orthogonalisation makes each new pixel change the
projection of the global approximation on previously selected
pixels. By linearity, each iteration can thus be understood as
selecting a pixel from the residual, then updating each of the
previously selected pixel coefficients from the newly selected
pixel.

C. Iterative hard thresholding
Iterative hard thresholding (IHT) [14] algorithms make

repeated use of the hard thresholding operator to converge
towards a locally optimal solution of the following problem:

min
x
∥r∥2 s. t. ∥x∥0 ≤ s. (3)

where s is the number of pixels used.
The algorithm repeats the following iteration

xn+1 = Hs(xn + μWrn) (4)

where the step size μ should be smaller than the W’s operator
norm to ensure convergence.
The Normalised Iterative Hard Thresholding (NIHT) [15]

proposes to optimise the step size μ at each iteration to
improve the convergence speed.
Assuming the approximation support Γx does not change

between two iterations, the iteration amounts to a gradient
descent step, and the optimal step size is

μn+1 = μ(xn, gn) =
(Γxn(gn))T Γxn(gn)

(Γxn(gn))T
(
WΓxnWT

Γxn
WΓxnΓxn(gn)

) (5)

where gn = Wrn is the WDM transform of the residual. A
temporary iteration x̃n+1 = Hs(xn + μn+1Wrn) is computed. If
the support did not change, that is, if

Γx̃n+1 = Γxn , (6)

then this iteration is optimal.
If the support did actually change, then the iteration neces-

sarily goes toward convergence if

μn+1 ≤ (1− c)
∥x̃n+1 − xn∥22

∥WT(x̃n+1 − xn)∥22
(7)

for a small fixed constant c. If this is not the case, then μn+1

is shrunk and a new iteration is computed until either (6) or
(7) is verified.
It must be noted that the solved problem is slightly different

from (1), in that instead of minimising the number of pixels
with a constraint on the approximation error, it minimises
the approximation error while fixing the number of pixels.
To solve our original problem, we need to scan the sparsity
levels s and find the smallest that allows an approximation
error lower than δ. The IHT thus has to be repeated several
times, introducing a significant computational overhead to the
algorithm.

D. Other sparse approximation methods

Several methods expand on the IHT algorithm to improve
its speed or results. A survey of them can be found in [16].
A widely used approach is to relax the L0 norm in (1) by
another Lp norm for p ≤ 1, sacrificing some sparsity in order
to improve robustness to noise.
In particular, using the L1 norm yields a convex problem

known as the Basis Pursuit, to which a globally optimal solu-
tion can be found using the Iterative Shrinkage/Thresholding
Algorithm (ISTA) [17], which replaces hard-thresholding with
soft-thresholding in the IHT algorithm to optimise on the L1
norm.
One of the main advantages of these methods is their ability

to provide an approximation that is robust to noise, whereas
MP and IHT-based algorithms may have trouble finding the
right pixels in a noisy environment. Such an advantage is lost
in our case, where we are working with templates – and thus
are in a noiseless environment –, while the compromise on
sparsity stays real, and is even increased in highly redundant
bases[18] such as ours, as seen in Fig. 2.
Although powerful in the right environment, these algo-

rithms are consequently irrelevant for our work, and shall not
be discussed further in this article.

IV. Updating Matching Pursuit

While keeping the greedy approach of the MP for the choice
of pixels, we can improve its sparsity by simply updating the
values of already selected pixels, as inspired by viewing the
OMP as an update on the coefficients. However, if we drop the
orthogonality constraint of the basis, it makes more sense to
update the previously selected pixels directly from the residual.
We define our iteration as

x̃n+1 = xn +H1(Wrn)
r̃n+1 = y−WTx̃n+1

xn+1 = x̃n+1 + μn+1Γxn(r̃n+1) (8)
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1: function Updating_MP(y, δ)
2: x← 0 ▷ Initialize time-frequency approximation
3: r← y−WTx ▷ Compute residual
4: repeat
5: g← Wr ▷ Compute residual’s Wilson transform
6: p← argmaxn ∥gn∥2 ▷ Select best pixel
7: x← x+ p ▷ Add it to approximation
8: r← y−WTx ▷ Update residual
9: g← Wr
10: μ← μ(x, g) ▷ Update step size, see (5)
11: t← Γx(g) ▷ Get non-zero pixels in residual
12: x← x+ μt ▷ Update with these values
13: r← y−WTx ▷ Update residual
14: until ∥r∥2 < δ ▷ Loop until precision is small
15: end function
Algorithm 1: Pseudo-code for the Updating Matching Pursuit
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Fig. 3: Example of a sparse time-frequency approximation
of gravitational-wave signal, obtained with UMP for an ap-
proximation error of 10%. The amplitudes are expressed in
arbitrary units.

where μn+1 is the step size at the next iteration. It amounts to
projecting the residual on the selected pixels to modify their
values between each step of the MP algorithm.
The update necessarily improves the approximation if

μn+1 ≤ 1
|W| . However, we can optimize the step size in a

similar way as in the NIHT. As the approximation support
does not change during the update step (8), we can simply
compute μn+1 as in (5), see Algorithm 1.
In the following we refer to this original algorithm as

Updating Matching Pursuit (UMP). As the original MP, it
is linear in the number of selected pixels, although its cost
is slightly higher since the step size computation requires
additional transforms.

V. Results and discussion
We apply the methods of Sec. III to the gravitational-wave

signals shown in Fig. 1. We measure the number of pixels
needed to reach a given approximation error.
In the first iterations the standard matching pursuit algo-

rithm is able to extract the main coherent structures [19] of
the signal. Then the convergence slows down considerably due
to the artefacts. Those artefacts make it impossible to go past
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(a) 19 - 19M⊙ non-spinning BBH waveform
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(b) 20 - 20M⊙ BBH spinning waveform with spins s1z = 0.4 and
s2z = 0.7
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(c) 15 - 15M⊙ non-spinning BBH waveform with eccentricity e = 0.3

Fig. 4: Approximation error vs. sparsity level obtained with
MP, OMP, normalised IHT and UMP. For the normalised
IHT, the algorithm was first called with 10 pixels. When
an iteration brought an improvement smaller than 0.1% of
the signal energy, it was called again with one more pixel,
initialised with the previous result.

a certain approximation level within a reasonable number of
pixels.
In our highly redundant basis, orthogonalising the pixels

does not correct their coefficients and the OMP does not yield
better results than the MP.
The IHT provides the best overall results. As the sparsity

level needs to be tuned, however, its computational cost is
much larger, as seen in Fig. 5. Furthermore, the high operator
norm of our basis means that the step size of this method must
be shrinked, adding even more to its computational cost.
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Number of pixels Computation time
UMP 54 31s
MP 69 14s
OMP 69 163s
NIHT 46 1808s

Fig. 5: Number of needed pixels and computation time to
approximate a 20 - 20M⊙ BBH spinning waveform with spins
s1z = 0.4 and s2z = 0.7 with the UMP, MP, OMP and
normalised IHT algorithms.

Number of pixels Computation time
UMP 72 12s
MP 91 6s
OMP 71 11s
NIHT 68 962s

Fig. 6: Number of needed pixels and computation time to
approximate a 20 - 20M⊙ BBH spinning waveform with spins
s1z = 0.4 and s2z = 0.7 with the UMP, MP, OMP and
normalised IHT algorithms, when we only use one Wilson
basis instead of six to remove redundancy in the basis.

The UMP algorithm corrects the MP artefacts and provides
results that are almost as good as those yieled by the IHT
– and sometimes better – for a fraction of the computational
cost. Needed computational effort per iteration is only triple
that of the MP. In our case, the greedy pixel selection is good
enough as long as their values are updated.
The updating of pixel coefficients is useful because of the

redundancy of bases, which is seen in Fig. 2. When this is
not the case, for instance in Fig. 6 where we only use one
orthogonal basis instead of a union of multiple bases, the OMP
becomes as good as our method, although our UMP algorithm
should still be faster with larger instances because of its linear
complexity with regards to the number of iterations.

VI. Conclusion
The present study highlights that the standard MP algorithm

fails to provide a good sparse approximation in the case
of highly-redundant dictionaries such as unions of Wilson
bases. Although hard-thresholding-based method perform well
in thoses cases, more iterations are needed to converge when
dealing with highly-correlated atoms. They are moreover ex-
tremely slow since this is the approximation error and not the
sparsity itself that is constrained. The UMP algorithm appears
to be the best trade-off with an almost as good approximation
as the IHT algorithm and for a much lower computational
cost. By updating the coefficients, the Updating Matching
Pursuit makes the original Matching Pursuit algorithm much
better at dealing with highly correlated bases, as it natively
allows constraints on the approximation error instead of the
sparsity. The current study has been performed on noise-free
signals and can thus be extended to the case where signals
are buried in some simulated or real instrumental noise as
measured by GW detectors. It would give an appreciation on
how the approximation we propose changes with the signal-
to-noise ratio.

Finally, some extensions of the MP and OMP algorithms,
for instance [20] or [21], show that the approximation quality
can be improved by searching for multiple candidates at each
step through a combinatorial approach. Such extensions could
also be applied to the UMP algorithm and would probably
further improve its results.
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