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Abstract—The Forward-Looking Sonar (FLS) is one of the
most effective devices for underwater exploration. It provides
high resolution images that can be used for several applications
in marine research, oceanographic, and deep-sea exploration.
However, due to underwater acoustic channels with limited
bandwidth, FLS image compression is still an open problem. This
paper presents a method for the progressive coding of underwater
images acquired by FLS. The proposed method combines K-
means clustering technique with Morphological Skeleton (MS).
The MS approximates the shape information to provide the
minimum amount of data to be transmitted. Moreover, K-means
clustering is also used to reduce the number of distinct colours.
Experimental results on real data acquired by FLS show that the
proposed technique outperforms popular compression methods.

Index Terms—forward-looking sonar, image compression,
shape coding, k-means clustering, morphological skeleton

I. INTRODUCTION

Several real applications in underwater context are carried
out in turbid water or in highly-cluttered environments [12].
In these scenarios, Forward-Looking Sonar (FLS) offers the
opportunity to perform exploration tasks regardless of the
visibility conditions. In Fig. 1, an example of FLS image is
shown. The automated FLS image processing is a complex
problem due to the presence of interactions among visual cues
and artifacts. In this setting, the transmission of FLS images
assumes a great importance. In particular, one of the most
critical issues is related to the limited bandwidth of the current
acoustic communication channels. In the present literature,
the discrete wavelet transform (DWT) [4] is often used to
compress the sonar data. The problem of this approach is
that it tends to smooth out the sharp edges in the images
[21]. Another popular solution is based on the use of the
Compressed Sensing (CS) [7], but it usually does not reach
high results in terms of visual quality.

Recently, Haghighat et al. [9] showed that the segmentation
of regions with a homogeneous intensity value (i.e., foreground
regions) from background can be very useful for coding sonar
images. These regions offer relevant shape information about
the presence of various objects. Therefore, in this context,
shape coding techniques can be considered one of the most
suitable solutions to meet bandwidth constraints and the
preservation of main information about foreground regions.

Fig. 1: An example of forward-looking sonar image.

In the last decades, shape coding has received a considerable
interest from the scientific community [18], [20], [22], [23]. In
particular, a very engaging approach, i.e., the Morphological
Skeleton (MS) [11], [17], has shown remarkable results in
different application contexts. The MS of binary images is
calculated by iterating a set of morphological operations, i.e.,
dilation and erosion. By using this technique notable results
can be also achieved in complex scenarios. In [8], Foresti et al.
presented a representation method for coding of lossy binary
images in surveillance applications based on an approximation
of the statistical MS. The skeleton techniques are also used
successfully in several medical applications [17]. For example,
Chen et al. [6] used the skeleton reconstruction for the stenosis
detection. Instead, Wang et al. [20] used the skeleton extraction
for vascular models. Another interesting work is proposed
by Xu et al. [22], where a generalized MS to combine the
concepts of internal and external maximal disks into a unified
framework is presented.

In underwater context, most of the traditional coding ap-
proaches are unable to detect the relevant information to be
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Fig. 2: Logical architecture of the proposed method.

transmitted. Inspired by the work proposed in [8], in this
paper a novel method to encode foreground objects in FLS
images is proposed. The aim of this work is to define a shape
coding technique for encoding only the relevant information
provided by the FLS, thus reducing the amount of significant
data to be transmitted. The proposed method consists of three
main steps. First, from each FLS image the MS is extracted.
Then, on the same images, a K-means clustering technique to
reduce the number of distinct colours is applied [5]. Finally,
this computed information is encoded by the Rice-Golomb
(RG) coding algorithm [19]. The reported experimental results,
carried out on several real FLS videos, have shown that
the proposed technique, applied to FLS images, outperforms
popular compression methods in the current state-of-the-art.

The main contributions of the present work can be summa-
rized as follows:

1) The application of a skeleton shape description and a
K-means colour quantization on FLS data;

2) The definition of a light approach, i.e., based on simple
algorithms, for coding and decoding of the FLS data;

3) Unlike several approaches in the current literature, ap-
plied on FLS data, the definition of a strategy able to
detect the relevant information to transmit.

The rest of the paper is structured as follows. Section
II provides an overview of the logical architecture. Section
III illustrates the proposed method. Section IV reports the
experimental results. Finally, section V concludes the paper.

II. THE LOGICAL ARCHITECTURE

Fig. 2 shows the logical architecture of the proposed FLS
coding algorithm. The proposed method receives as input a
FLS video sequence, whose frames are processed by a change
detection (CD) module [2], [3]. The first frame is used as
reference background and it is transmitted by the JPEG2000

lossless coding algorithm [15]. In particular, the CD module
receives as input two gray-level FLS images and provides
as output a binary image X , obtained by thresholding the
intensity difference between the two images. The threshold
is tuned according to different aspects, including sonar type,
underwater environment, and illumination type. The aim of
the CD step is to identify the different patterns, or blobs,
(i.e., areas with significant changes) corresponding to possible
interesting objects. For each area, two further elaborations
are performed: MS extraction and colour quantization. The
first is obtained by the iteration of morphological operators,
i.e., erosion and dilation, on each binary blob, which is
thus progressively shrunk. The second is got by using a K-
means clustering technique to perform the colour quantization
process. In the end, the information about the MS and colour
quantization is coded by the RG algorithm. The decoding
module performs the inverse operation with respect to that just
illustrated. In particular, it receives the first frame and uses it
as background reference. Then, it receives and reconstructs
the shape information. Finally, it adds the colour data to the
reconstructed image.

III. THE FORWARD-LOOKING SONAR CODING METHOD

In this section, the proposed FLS coding method is de-
scribed in detail. The pseudocode in Algorithm 1 is reported
to summarize the main execution steps.

A. Change Detection

The CD module receives as input two FLS images,
Ik−1(x, y) and Ik(x, y), acquired at the time instants k − 1
and k, respectively. The two images allow the method to
detect areas corresponding to moving objects. In a first step,
the intensity difference Dk(x, y) between the two images is
computed. Later, a threshold is applied to the Dk(x, y) image
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Algorithm 1: Pseudocode of the proposed method.
Input:

FLS video sequence: I = {I0, .., IT }
Clusters for colour quantization: v
Threshold for Change Detection: δ
Accumulator sets eros1,eros2 and open

Send I0 with JPEG2000 lossless coding
for k = 1 to T do

Compute change detection Dk between Ik−1 and Ik
Establish where each point (x, y) ∈ Dk is a background point or a
moving object point and obtain the binary mask X by using threshold δ
Extract from X a collection M of n minimum bounding boxes
for m ∈M do

Compute morphological skeleton Sk(X)
B = square 3x3 structural element
eros1 = m
Number of iteration of MS iter = 0
while eros2 is empty do

eros2 = erode(eros1, B)
open = dilate(eros2, B)
Skiter(m) = eros1− open
eros1 = eros2
iter = iter + 1

end
N = iter
SkN (m) = eros1
Compute index table idx and colour palette
C = {C1, C2, ..., Cv} with K-means clustering
code =Rice-Golomb(Sk(X), idx, C)
Transmit code

end
end

to establish the points (x, y) ∈ Dk(x, y) that belong to the
foreground. If Dk(x, y) > δ, for a fixed (x, y), then that point
is marked as object, otherwise it is marked as background.
Like reported previously, the threshold δ depends on sev-
eral aspects (e.g., illumination changes) and it is empirically
computed. At the end of the CD process, a binary image X
is obtained, where sets of 1 are foreground elements, while
sets of 0 are the background. Afterwards, from the image
X , a collection of M Minimum Bounding Boxes (MBBs)
is extracted. Each m ∈ M represents an image area where
significant changes are occurred [1]–[3], [8].

B. Morphological Skeleton Extraction

For each image area m ∈ M , the extraction of the MS,
defined by sk(m), is performed. In general, the MS can be
described as follows:

sk(m) = {[x, y, n(x, y)] : (x, y) ∈ m,n(x, y) ∈ [1, .., N ]} (1)

where, the function n(x, y) associates at each skeleton point
(x, y) the iteration in which it was detected. Instead, N
represents the maximum number of iterations. Notice that, the
MS preserves the structure of the shape, but, at the same time,
it removes all redundant pixels. As a running example, Fig. 3
shows the processing on a real FLS image. More specifically,
Fig. 3a represents an acquired human hand, Fig. 3b is the
binary pattern (in this case, m), and Fig. 3c is the result
obtained by the skeleton extraction. The MS is computed by
applying iteratively the morphological operators as detailed in
[8], [13].

C. Colour Quantization

Colour quantization process is a crucial step for obtaining
limited-colour images with a high quality level for each blob.

(a) Image (b) Mask (c) Skeleton

Fig. 3: Example of morphological skeleton extraction: (a)
shows the original image, (b) shows the mask extracted by
the CD module, and (c) shows the related skeleton.

The proposed method adopts the K-means clustering technique
described in [5]. It is one of the most widely used methods
for colour quantization. This algorithm is designed to classify
all pixels, within an image, in a fixed number v of colours.
The value of v must be chosen to reduce the colour space
and, at the same time, guarantee that the reconstructed image
is qualitatively close to the original one. In Fig.4 the steps of
the colour quantization are shown. Summarizing, given a set
Z = {z1, . . . , zN} ∈ RD (where D represents the intensity
values of the images), the objective of the K-means clustering
is to split Z in v clusters C = {c1, . . . , cv}, where ∪vi=1ci = Z
and ci ∩ cj = ∅ with i 6= j, by minimization of the Sum of
the Squared Error (SSE) as follows:

SSE =

v∑
j=1

∑
zi∈Cj

‖zi − cj‖2 (2)

The K-means clustering was chosen for several advantages,
including easy implementation and linear complexity.

D. Rice-Golomb Coding

The RG coding is a lossless compression algorithm used in
JPEG-LS [16]. In general, given a constant m, any symbol c
can be represented as a quotient q and a remainder r, where:

c = qm+ r (3)

To encode a character c, first q = b cmc is computed. Then,
a q-length string of 1 and a r-length string of 0 bits are
written out. At the end, the last m bits of r are also write
out. The decode module works in the same way. First, it
determines q by counting the number of 1 before the first 0.
Then, it calculates r reading the next m bits as a binary value
and, finally, it decodes the character c with the formulation
expressed in Equation 3. If c is small (relatively to m) then
also q is small. The RG algorithm was used because, due to
the large number of small values, it reduces the average length
per encoded value compared to fixed-width encoding.

IV. EXPERIMENTAL RESULTS

In this section, the experimental results are reported. Due
to the lack of public datasets for FLS images, we have used,
for the final tests, a small set of images that are however
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Fig. 4: Colour quantization: (a) composition of a quantized-
colour image with r rows and c columns, (b) two-dimensional
image pixel matrix with colour indexes, (c) one-dimensional
data structure of the limited-colour image, and (d) the colours
palette with the K corresponding indexes.

freely available. In particular, we have used real FLS sample
data obtainable by the Teledyne Marine ProViewer1. In Table
I, we summarize the frame rate and the video size used
for the experiments. To speed up the entire process, in the

TABLE I: FLS videos used for testing the proposed method.

Name Frames Rate (fps) Size Duration (s)
Airplane 3 1137× 474 29
Diver 1 1137× 474 199
Hand & Cinderblock 7 1137× 474 19

pre-processing stage, all frames were resized by pixel area
relation to 568 × 237. To evaluate the performance of the
proposed method, we used two qualitative metrics [10]: Peak
Signal to Noise Ratio (PSNR) and Structural Similarity Index
Measure (SSIM). Furthermore, to show the effectiveness of the
proposed approach, the bit per pixel information (bpp) is also
provided. In the experiments, the threshold δ and the value
of k have been empirically set to 1 and 32, respectively. We
compared the proposed method with JPEG [24], progressive
JPEG [14], and SPHIT [4]. To highlight the goodness of the
MS representation, the just introduced techniques were used
on the image areas extracted from the CD step. The Table II
shows the results of the comparison and the performance of
the proposed approach on the FLS videos.

The proposed method obtains remarkable results on each
video. The best results are presented for the Airplane video,
where the method achieves comparable results in term of bpp

1The videos are available on: http://www.teledynemarine.com/ProViewer.

TABLE II: Results of the proposed method (average values on
the test FLS videos).

Method Metric Airplane Diver Hand & Cinderblock

JPEG
PSNR 30.1 dB 31.1 dB 29.8 dB
SSIM 83% 83% 80%
bpp 0.2 0.1 0.1

Progressive JPEG
PSNR 30.1 dB 31.1 dB 34.7 dB
SSIM 83% 83% 80%
bpp 0.18 0.06 0.08

SPHIT
PSNR 30.1 dB 32.3 dB 34.7 dB
SSIM 84% 89% 86%
bpp 0.2 0.1 0.05

Proposed
PSNR 30.8 dB 37.3 dB 38.8 dB
SSIM 90% 93% 96%
bpp 0.2 0.09 0.1

and outperforms other methods on PSNR and SSIM metrics.
Also in the Diver video our approach presents a significant
result with a comparable performance in bpp with respect
to the progressive JPEG. In Hand & Cinderblock video, the
proposed method obtains the better result. In terms of PSNR,
the best result is of 34.7 dB, while in our method the metric
value is of 38.8 dB. As previously reported, the output quality
of the developed approach is completely comparable with
different key works of the current literature (at the same bit
rate). Anyway, we know that we are working in a niche
context with specific images. However, this context can be
considered very promising in the exploration of the underwater
environments. Fig. 5 shows a visual comparison among the
selected algorithms for a bit rate lower than 1 bpp. The JPEG
images present blocking artifacts and are perceptibly worse
than competitive techniques. The approach reported in this
paper and the SPHIT algorithm produce comparable output,
but SPHIT sacrifices some details in favour of the visual
appearance. Unlike the other reported approaches, our method
can preserve all the image details. Notice that, due to the
noise present in the sonar image, some white dots can appear
in the image reconstruction. Nevertheless, the quality of the
reconstructed image is better than compared methods. Finally,
thanks to the effectiveness of MS, the proposed method can
process all videos in real-time.

V. CONCLUSION

This paper presents a novel compression method for
forward-looking sonar data in underwater environments. The
proposed approach presents different contributions, including
shape description and colour quantization. Compared with
popular algorithms, the proposed method, on underwater FLS
data, outperforms the current state-of-the-art on the basis
of well-known qualitative metrics. Both code and encode
processes are not time-consuming, thus allowing their im-
plementation in different hardware solutions. The latter is a
crucial aspect of the deep-sea exploration.
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Fig. 5: Compression result for test images. The first column denotes the original images. The second, third, and fourth columns
denote the images obtained by the progressive JPEG, SPHIT, and proposed algorithm, respectively.
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